Unsupervised deep learning to solve power ...
Document type :
Communication dans un congrès avec actes
Title :
Unsupervised deep learning to solve power allocation problems in cognitive relay networks
Author(s) :
Benatia, Yacine [Auteur]
Equipes Traitement de l'Information et Systèmes [ETIS - UMR 8051]
Ecole Nationale Supérieure de l'Electronique et de ses Applications [ENSEA]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Savard, Anne [Auteur]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Negrel, Romain [Auteur]
Laboratoire d'Informatique Gaspard-Monge [LIGM]
Université Gustave Eiffel
Belmega, Elena Veronica [Auteur]
Equipes Traitement de l'Information et Systèmes [ETIS - UMR 8051]
Ecole Nationale Supérieure de l'Electronique et de ses Applications [ENSEA]
Laboratoire d'Informatique Gaspard-Monge [LIGM]
Université Gustave Eiffel
Equipes Traitement de l'Information et Systèmes [ETIS - UMR 8051]
Ecole Nationale Supérieure de l'Electronique et de ses Applications [ENSEA]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Savard, Anne [Auteur]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Negrel, Romain [Auteur]
Laboratoire d'Informatique Gaspard-Monge [LIGM]
Université Gustave Eiffel
Belmega, Elena Veronica [Auteur]
Equipes Traitement de l'Information et Systèmes [ETIS - UMR 8051]
Ecole Nationale Supérieure de l'Electronique et de ses Applications [ENSEA]
Laboratoire d'Informatique Gaspard-Monge [LIGM]
Université Gustave Eiffel
Conference title :
IEEE International Conference on Communications Workshops, ICC Workshops 2022
City :
Séoul
Country :
Corée du Sud
Start date of the conference :
2022-05-16
Publication date :
2022
English keyword(s) :
Unsupervised deep learning
Full-duplex relaying
Decode-and-Forward
Cognitive radio
Full-duplex relaying
Decode-and-Forward
Cognitive radio
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
English abstract : [en]
In this paper, an unsupervised deep learning approach is proposed to solve the constrained and non-convex Shannon rate maximization problem in a relay-aided cognitive radio network. This network consists of a primary and ...
Show more >In this paper, an unsupervised deep learning approach is proposed to solve the constrained and non-convex Shannon rate maximization problem in a relay-aided cognitive radio network. This network consists of a primary and a secondary user-destination pair and a secondary full-duplex relay performing Decode-and-Forward. The primary communication is protected by a Quality of Service (QoS) constraint in terms of tolerated Shannon rate degradation. The relaying operation leads to non-convex objective and primary QoS constraint, which makes deep learning approaches relevant and promising. For this, we propose a fully-connected neural network architecture coupled with a custom and communication-tailored loss function to be minimized during training in an unsupervised manner. A major interest of our approach is that the required training data contains only system parameters without the corresponding solutions to the non-convex optimization problem, as opposed to supervised approaches. Our numerical experiments show that our proposed approach has a high generalization capability on unseen data without overfitting. Also, the predicted solution performs close to the brute force one, highlighting the high potential of our unsupervised approach.Show less >
Show more >In this paper, an unsupervised deep learning approach is proposed to solve the constrained and non-convex Shannon rate maximization problem in a relay-aided cognitive radio network. This network consists of a primary and a secondary user-destination pair and a secondary full-duplex relay performing Decode-and-Forward. The primary communication is protected by a Quality of Service (QoS) constraint in terms of tolerated Shannon rate degradation. The relaying operation leads to non-convex objective and primary QoS constraint, which makes deep learning approaches relevant and promising. For this, we propose a fully-connected neural network architecture coupled with a custom and communication-tailored loss function to be minimized during training in an unsupervised manner. A major interest of our approach is that the required training data contains only system parameters without the corresponding solutions to the non-convex optimization problem, as opposed to supervised approaches. Our numerical experiments show that our proposed approach has a high generalization capability on unseen data without overfitting. Also, the predicted solution performs close to the brute force one, highlighting the high potential of our unsupervised approach.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03534545v4/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03534545v4/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03534545v4/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Unsupervised_deep_learning_to_solve_power_allocation_problems_in_cognitive_relay_networks__ICC_.pdf
- Open access
- Access the document