Hybrid Acquisition Processes in Surrogate-based ...
Type de document :
Communication dans un congrès avec actes
Titre :
Hybrid Acquisition Processes in Surrogate-based Optimization. Application to Covid-19 Contact Reduction
Auteur(s) :
Briffoteaux, Guillaume [Auteur]
Université de Mons / University of Mons [UMONS]
Optimisation de grande taille et calcul large échelle [BONUS]
Melab, Nouredine [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Mezmaz, Mohand [Auteur]
Université de Mons / University of Mons [UMONS]
Tuyttens, Daniel [Auteur]
Université de Mons / University of Mons [UMONS]
Université de Mons / University of Mons [UMONS]
Optimisation de grande taille et calcul large échelle [BONUS]
Melab, Nouredine [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Mezmaz, Mohand [Auteur]
Université de Mons / University of Mons [UMONS]
Tuyttens, Daniel [Auteur]
Université de Mons / University of Mons [UMONS]
Titre de la manifestation scientifique :
BIOMA 2022 - International Conference on Bioinspired Optimisation Methods and Their Applications
Ville :
Maribor
Pays :
Slovénie
Date de début de la manifestation scientifique :
2022-11-17
Discipline(s) HAL :
Mathématiques [math]/Optimisation et contrôle [math.OC]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Modélisation et simulation
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Modélisation et simulation
Résumé en anglais : [en]
Parallel Surrogate-Assisted Evolutionary Algorithms (P-SAEAs) are based on surrogate-informed reproduction operators to propose new candidates to solve computationally expensive optimization problems. Differently, Parallel ...
Lire la suite >Parallel Surrogate-Assisted Evolutionary Algorithms (P-SAEAs) are based on surrogate-informed reproduction operators to propose new candidates to solve computationally expensive optimization problems. Differently, Parallel Surrogate-Driven Algorithms (P-SDAs) rely on the optimization of a surrogate-informed metric of promisingness to acquire new solutions. The former are promoted to deal with moderately computationally expensive problems while the latter are put forward on very costly problems. This paper investigates the design of hybrid strategies combining the acquisition processes of both P-SAEAs and P-SDAs to retain the best of both categories of methods. The objective is to reach robustness with respect to the computational budgets and parallel scalability.Lire moins >
Lire la suite >Parallel Surrogate-Assisted Evolutionary Algorithms (P-SAEAs) are based on surrogate-informed reproduction operators to propose new candidates to solve computationally expensive optimization problems. Differently, Parallel Surrogate-Driven Algorithms (P-SDAs) rely on the optimization of a surrogate-informed metric of promisingness to acquire new solutions. The former are promoted to deal with moderately computationally expensive problems while the latter are put forward on very costly problems. This paper investigates the design of hybrid strategies combining the acquisition processes of both P-SAEAs and P-SDAs to retain the best of both categories of methods. The objective is to reach robustness with respect to the computational budgets and parallel scalability.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-03770742/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-03770742/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-03770742/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- g_briffoteaux_et_al_camera_ready.pdf
- Accès libre
- Accéder au document