Comprehensive model for ideal reverse ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Comprehensive model for ideal reverse leakage current components in Schottky barrier diodes tested in GaN-on-SiC samples
Author(s) :
Orfao, B. [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Di Gioia, G. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Advanced NanOmeter DEvices - IEMN [ANODE - IEMN]
Vasallo, B. [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Pérez, S. [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Mateos, J. [Auteur]
Departamento de Fisica Aplicada [Salamanca]
Roelens, Yannick [Auteur]
Advanced NanOmeter DEvices - IEMN [ANODE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Frayssinet, E. [Auteur]
Centre de recherche sur l'hétéroepitaxie et ses applications [CRHEA]
Cordier, Y. [Auteur]
Centre de recherche sur l'hétéroepitaxie et ses applications [CRHEA]
Zaknoune, Mohammed [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Advanced NanOmeter DEvices - IEMN [ANODE - IEMN]
González, T. [Auteur]
Departamento de Fisica Aplicada [Salamanca]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Di Gioia, G. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Advanced NanOmeter DEvices - IEMN [ANODE - IEMN]
Vasallo, B. [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Pérez, S. [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Mateos, J. [Auteur]
Departamento de Fisica Aplicada [Salamanca]
Roelens, Yannick [Auteur]
Advanced NanOmeter DEvices - IEMN [ANODE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Frayssinet, E. [Auteur]
Centre de recherche sur l'hétéroepitaxie et ses applications [CRHEA]
Cordier, Y. [Auteur]
Centre de recherche sur l'hétéroepitaxie et ses applications [CRHEA]
Zaknoune, Mohammed [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Advanced NanOmeter DEvices - IEMN [ANODE - IEMN]
González, T. [Auteur]
Departamento de Fisica Aplicada [Salamanca]
Journal title :
Journal of Applied Physics
Pages :
044502
Publisher :
American Institute of Physics
Publication date :
2022-07-28
ISSN :
0021-8979
English keyword(s) :
Current-voltage characteristic
Schottky barrier diode
Electrical properties and parameters
Semiconductor structures
Thermionic emission
Schottky barrier diode
Electrical properties and parameters
Semiconductor structures
Thermionic emission
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
A model to predict the ideal reverse leakage currents in Schottky barrier diodes, namely, thermionic emission and tunneling components, has been developed and tested by means of current–voltage–temperature measurements in ...
Show more >A model to predict the ideal reverse leakage currents in Schottky barrier diodes, namely, thermionic emission and tunneling components, has been developed and tested by means of current–voltage–temperature measurements in GaN-on-SiC devices. The model addresses both current components and both forward and reverse polarities in a unified way and with the same set of parameters. The values of the main parameters (barrier height, series resistance, and ideality factor) are extracted from the fitting of the forward-bias I–V curves and then used to predict the reverse-bias behavior without any further adjustment. An excellent agreement with the I–V curves measured in the forward bias in the GaN diode under analysis has been achieved in a wide range of temperatures (275–475 K). In reverse bias, at temperatures higher than 425 K, a quasi-ideal behavior is found, but additional mechanisms (most likely trap-assisted tunneling) lead to an excess of leakage current at lower temperatures. We demonstrate the importance of the inclusion of image-charge effects in the model in order to correctly predict the values of the reverse leakage current. Relevant physical information, like the energy range at which most of the tunnel injection takes place or the distance from the interface at which tunneled electrons emerge, is also provided by the model.Show less >
Show more >A model to predict the ideal reverse leakage currents in Schottky barrier diodes, namely, thermionic emission and tunneling components, has been developed and tested by means of current–voltage–temperature measurements in GaN-on-SiC devices. The model addresses both current components and both forward and reverse polarities in a unified way and with the same set of parameters. The values of the main parameters (barrier height, series resistance, and ideality factor) are extracted from the fitting of the forward-bias I–V curves and then used to predict the reverse-bias behavior without any further adjustment. An excellent agreement with the I–V curves measured in the forward bias in the GaN diode under analysis has been achieved in a wide range of temperatures (275–475 K). In reverse bias, at temperatures higher than 425 K, a quasi-ideal behavior is found, but additional mechanisms (most likely trap-assisted tunneling) lead to an excess of leakage current at lower temperatures. We demonstrate the importance of the inclusion of image-charge effects in the model in order to correctly predict the values of the reverse leakage current. Relevant physical information, like the energy range at which most of the tunnel injection takes place or the distance from the interface at which tunneled electrons emerge, is also provided by the model.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- 5.0100426
- Open access
- Access the document
- document
- Open access
- Access the document
- ORFAO_2022_JAP_044502.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- ORFAO_2022_JAP_044502.pdf
- Open access
- Access the document