Support Vector Machine with feature ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Support Vector Machine with feature selection: A multiobjective approach
Auteur(s) :
Alcaraz, Javier [Auteur]
Universidad Miguel Hernández [Elche] [UMH]
Labbé, Martine [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Landete, Mercedes [Auteur]
Universidad Miguel Hernández [Elche] [UMH]
Universidad Miguel Hernández [Elche] [UMH]
Labbé, Martine [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Landete, Mercedes [Auteur]
Universidad Miguel Hernández [Elche] [UMH]
Titre de la revue :
Expert systems with applications
Pagination :
117485
Éditeur :
Elsevier
Date de publication :
2022-05-11
ISSN :
0957-4174
Mot(s)-clé(s) en anglais :
Support vector machine
Feature selection
Multi-objective optimization
NSGA-II
AUGMECON2
Feature selection
Multi-objective optimization
NSGA-II
AUGMECON2
Discipline(s) HAL :
Computer Science [cs]/Operations Research [math.OC]
Résumé en anglais : [en]
Support Vector Machines are models widely used in supervised classification. The classical model minimizes a compromise between the structural risk and the empirical risk. In this paper, we consider the Support Vector ...
Lire la suite >Support Vector Machines are models widely used in supervised classification. The classical model minimizes a compromise between the structural risk and the empirical risk. In this paper, we consider the Support Vector Machine with feature selection and we design and implement a bi-objective evolutionary algorithm for approximating the Pareto optimal frontier of the two objectives. The metaheuristic is based on the nondominated sorting genetic algorithm and includes problem-specific knowledge. To demonstrate the efficiency of the algorithm proposed, we have carried out extensive computational experiments comparing the Paretofrontiers given by the exact method AUGMECON2 and the metaheuristic approach respectively in a set of well known instances. In this paper, we also discuss some properties of the points in the Pareto frontier.Lire moins >
Lire la suite >Support Vector Machines are models widely used in supervised classification. The classical model minimizes a compromise between the structural risk and the empirical risk. In this paper, we consider the Support Vector Machine with feature selection and we design and implement a bi-objective evolutionary algorithm for approximating the Pareto optimal frontier of the two objectives. The metaheuristic is based on the nondominated sorting genetic algorithm and includes problem-specific knowledge. To demonstrate the efficiency of the algorithm proposed, we have carried out extensive computational experiments comparing the Paretofrontiers given by the exact method AUGMECON2 and the metaheuristic approach respectively in a set of well known instances. In this paper, we also discuss some properties of the points in the Pareto frontier.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal-cnrs.archives-ouvertes.fr/hal-03824598/document
- Accès libre
- Accéder au document
- https://hal-cnrs.archives-ouvertes.fr/hal-03824598/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 1-s2.0-S0957417422008144-main-2.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 1-s2.0-S0957417422008144-main-2.pdf
- Accès libre
- Accéder au document