CFD characterization of a wet foam flow ...
Type de document :
Communication dans un congrès avec actes
DOI :
URL permanente :
Titre :
CFD characterization of a wet foam flow rheological behavior
Auteur(s) :
Augustin, Wolfgang [Auteur]
Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig]
Gheith, Ramla [Auteur]
Aloui, Fethi [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Dallagi, Heni [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Al Saabi, Ahmad [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Faille, Christine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Benezech, Thierry [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig]
Gheith, Ramla [Auteur]
Aloui, Fethi [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Dallagi, Heni [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Al Saabi, Ahmad [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Faille, Christine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Benezech, Thierry [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Titre de la manifestation scientifique :
ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
Ville :
Montréal
Pays :
Canada
Date de début de la manifestation scientifique :
2018-07-15
Titre de l’ouvrage :
Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
Titre de la revue :
Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
Éditeur :
ASME
Lieu de publication :
New York (united states)
Date de publication :
2018
ISBN :
978-0-7918-5157-9
Mot(s)-clé(s) en anglais :
Particle 1 Image Velocimetry (PIV)
Wall shear stress
Pressure losses
Behavior laws
Liquid-slipping layer
CFD simulations
Nettoyage
Comportement rhéologique
Détergent moussant
Aqueous foam flow
Rheology
Horizontal channels
Square cross-section
Herschel-Bulkley model
Void fraction
Wall shear stress
Pressure losses
Behavior laws
Liquid-slipping layer
CFD simulations
Nettoyage
Comportement rhéologique
Détergent moussant
Aqueous foam flow
Rheology
Horizontal channels
Square cross-section
Herschel-Bulkley model
Void fraction
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
In some industrial processes, aqueous foams flow presents an important phase of the process, whereas, they cause pressure drop when designing and dimensioning systems. Identifying the different rheological parameters of ...
Lire la suite >In some industrial processes, aqueous foams flow presents an important phase of the process, whereas, they cause pressure drop when designing and dimensioning systems. Identifying the different rheological parameters of foam flow is an interest key to understanding the interfacial phenomena. Actually, the difficulty to model the rheological parameters of foam flow is a major challenge. In this study, we present a robust model to describe the foam fluid inside horizontal channels by the reverse approach of a numerical simulation (Computational Fluid Dynamics: CFD), based on the behavior laws of the Herschel-Bulkley type, for the non-Newtonian fluids. This reverse method starts from experimental (deduced from Particle Image Velocimetry (PIV) technique) results of the previous experimental work of Chovet (2015). The pressure losses measurements near-wall velocity fields, velocity profiles and the wall shear stress evolution including the void fraction from 55% to 85%, are considered in order to identify the different parameters of the developed model to determine the nature of the flow, the foams rheological behavior and the foam flow regime along the length of the channel. The numerical study (CFD) is applied for two conditions: the first one for a wet foam flow with a void fraction of 70% and a foam flow velocity of 2cm/s (one-dimensional regime) and the second one, for a foam quality of 55% and a flow rate of 6cm/s. The numerical evolutions are identical to experimental ones for these same conditions. Therefore, we can conclude that the Herschel-Bulkley rheological model can correctly describe the aqueous foams fix behavior.Lire moins >
Lire la suite >In some industrial processes, aqueous foams flow presents an important phase of the process, whereas, they cause pressure drop when designing and dimensioning systems. Identifying the different rheological parameters of foam flow is an interest key to understanding the interfacial phenomena. Actually, the difficulty to model the rheological parameters of foam flow is a major challenge. In this study, we present a robust model to describe the foam fluid inside horizontal channels by the reverse approach of a numerical simulation (Computational Fluid Dynamics: CFD), based on the behavior laws of the Herschel-Bulkley type, for the non-Newtonian fluids. This reverse method starts from experimental (deduced from Particle Image Velocimetry (PIV) technique) results of the previous experimental work of Chovet (2015). The pressure losses measurements near-wall velocity fields, velocity profiles and the wall shear stress evolution including the void fraction from 55% to 85%, are considered in order to identify the different parameters of the developed model to determine the nature of the flow, the foams rheological behavior and the foam flow regime along the length of the channel. The numerical study (CFD) is applied for two conditions: the first one for a wet foam flow with a void fraction of 70% and a foam flow velocity of 2cm/s (one-dimensional regime) and the second one, for a foam quality of 55% and a flow rate of 6cm/s. The numerical evolutions are identical to experimental ones for these same conditions. Therefore, we can conclude that the Herschel-Bulkley rheological model can correctly describe the aqueous foams fix behavior.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSCL
INRAE
CNRS
ENSCL
INRAE
CNRS
Collections :
Équipe(s) de recherche :
Processus aux Interfaces et Hygiène des Matériaux (PIHM)
Date de dépôt :
2022-12-02T11:39:14Z
Fichiers
- document
- Accès libre
- Accéder au document