SuperpixelGridMasks Data Augmentation: ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
SuperpixelGridMasks Data Augmentation: Application to Precision Health and Other Real-world Data
Author(s) :
Hammoudi, Karim [Auteur]
Institut de Recherche en Informatique Mathématiques Automatique Signal - IRIMAS - UR 7499 [IRIMAS]
Cabani, Adnane [Auteur]
École Supérieure d’Ingénieurs en Génie Électrique [ESIGELEC]
Slika, Bouthaina [Auteur]
Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] [UPV / EHU]
Euskal Herriko Unibertsitatea [Guipúzcoa] [EHU]
Benhabiles, Halim [Auteur]
JUNIA [JUNIA]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Dornaika, Fadi [Auteur]
Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] [UPV / EHU]
Melkemi, Mahmoud [Auteur]
Institut de Recherche en Informatique Mathématiques Automatique Signal - IRIMAS - UR 7499 [IRIMAS]
Institut de Recherche en Informatique Mathématiques Automatique Signal - IRIMAS - UR 7499 [IRIMAS]
Cabani, Adnane [Auteur]
École Supérieure d’Ingénieurs en Génie Électrique [ESIGELEC]
Slika, Bouthaina [Auteur]
Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] [UPV / EHU]
Euskal Herriko Unibertsitatea [Guipúzcoa] [EHU]
Benhabiles, Halim [Auteur]

JUNIA [JUNIA]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Dornaika, Fadi [Auteur]
Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] [UPV / EHU]
Melkemi, Mahmoud [Auteur]
Institut de Recherche en Informatique Mathématiques Automatique Signal - IRIMAS - UR 7499 [IRIMAS]
Journal title :
Journal of Healthcare Informatics Research
Pages :
442–460
Publication date :
2023-01-13
ISSN :
2509-4971
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
A novel approach of data augmentation based on irregular superpixel decomposition is proposed. This approach called SuperpixelGridMasks permits to extend original image datasets that are required by training stages of ...
Show more >A novel approach of data augmentation based on irregular superpixel decomposition is proposed. This approach called SuperpixelGridMasks permits to extend original image datasets that are required by training stages of machine learning-related analysis architectures towards increasing their performances. Three variants named SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix are presented. These grid-based methods produce a new style of image transformations using the dropping and fusing of information. Extensive experiments using various image classification models as well as precision health and surrounding real-world datasets show that baseline performances can be significantly outperformed using our methods. The comparative study also shows that our methods can overpass the performances of other data augmentations. SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix codes are publicly available at https://github.com/hammoudiproject/SuperpixelGridMasks.Show less >
Show more >A novel approach of data augmentation based on irregular superpixel decomposition is proposed. This approach called SuperpixelGridMasks permits to extend original image datasets that are required by training stages of machine learning-related analysis architectures towards increasing their performances. Three variants named SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix are presented. These grid-based methods produce a new style of image transformations using the dropping and fusing of information. Extensive experiments using various image classification models as well as precision health and surrounding real-world datasets show that baseline performances can be significantly outperformed using our methods. The comparative study also shows that our methods can overpass the performances of other data augmentations. SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix codes are publicly available at https://github.com/hammoudiproject/SuperpixelGridMasks.Show less >
Language :
Anglais
Popular science :
Non
Related reference(s) :
Comment :
ressources projet: https://github.com/hammoudiproject/SuperpixelGridMasksdatasets used for the article: 1 Dataset Chest X-Ray Images: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia2 A PASCAL VOC dataset: http://host.robots.ox.ac.uk/pascal/VOC/databases.html#VOC2005_1
Source :
Files
- document
- Open access
- Access the document
- Hammoudi_SuperpixelGridMasks_Data_Augmentation_2204.08458.pdf
- Open access
- Access the document
- 2204.08458
- Open access
- Access the document
- document
- Open access
- Access the document
- Hammoudi_SuperpixelGridMasks_Data_Augmentation_2204.08458.pdf
- Open access
- Access the document