Toward Run-time Coordination of Reconfiguration ...
Type de document :
Communication dans un congrès avec actes
Titre :
Toward Run-time Coordination of Reconfiguration Requests in Cloud Computing Systems
Auteur(s) :
Farhat, Salman [Auteur]
Self-adaptation for distributed services and large software systems [SPIRALS]
Université de Lille
Bliudze, Simon [Auteur]
Self-adaptation for distributed services and large software systems [SPIRALS]
Université de Lille
Duchien, Laurence [Auteur]
Self-adaptation for distributed services and large software systems [SPIRALS]
Université de Lille
Kouchnarenko, Olga [Auteur]
Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) [FEMTO-ST]
Self-adaptation for distributed services and large software systems [SPIRALS]
Université de Lille
Bliudze, Simon [Auteur]

Self-adaptation for distributed services and large software systems [SPIRALS]
Université de Lille
Duchien, Laurence [Auteur]
Self-adaptation for distributed services and large software systems [SPIRALS]
Université de Lille
Kouchnarenko, Olga [Auteur]
Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) [FEMTO-ST]
Éditeur(s) ou directeur(s) scientifique(s) :
Sung-Shik Jongmans
Titre de la manifestation scientifique :
COORDINATION 2023 - 25th International Conference on Coordination Models and Languages
Ville :
Lisbon
Pays :
Portugal
Date de début de la manifestation scientifique :
2023-06-19
Éditeur :
Springer Nature Switzerland
Date de publication :
2023-04-22
Mot(s)-clé(s) en anglais :
Concurrent Component-based Systems
Variability Models
Self-Configuration
Dynamic Reconfiguration
Variability Models
Self-Configuration
Dynamic Reconfiguration
Discipline(s) HAL :
Informatique [cs]/Génie logiciel [cs.SE]
Résumé en anglais : [en]
Cloud applications and cyber-physical systems are becoming increasingly complex, requiring frequent reconfiguration to adapt to changing needs and requirements. Existing approaches compute new valid configurations either ...
Lire la suite >Cloud applications and cyber-physical systems are becoming increasingly complex, requiring frequent reconfiguration to adapt to changing needs and requirements. Existing approaches compute new valid configurations either at design time, at runtime, or both. However, these approaches can lead to significant computational or validation overheads for each reconfiguration step. We propose a component-based approach that avoids computational and validation overheads using a representation of the set of valid configurations as a variability model. More precisely, our approach leverages feature models to automatically generate, in a component-based formalism called JavaBIP, run-time variability models that respect the feature model constraints. Produced run-time variability models enable control over application reconfiguration by executing reconfiguration requests in such a manner as to ensure the (partial) validity of all reachable configurations. We evaluate our approach on a simple web application deployed on the Heroku cloud platform. Experimental results show that the overheads induced by generated run-time models on systems involving up to 300 features are negligible, demonstrating the practical interest of our approach.Lire moins >
Lire la suite >Cloud applications and cyber-physical systems are becoming increasingly complex, requiring frequent reconfiguration to adapt to changing needs and requirements. Existing approaches compute new valid configurations either at design time, at runtime, or both. However, these approaches can lead to significant computational or validation overheads for each reconfiguration step. We propose a component-based approach that avoids computational and validation overheads using a representation of the set of valid configurations as a variability model. More precisely, our approach leverages feature models to automatically generate, in a component-based formalism called JavaBIP, run-time variability models that respect the feature model constraints. Produced run-time variability models enable control over application reconfiguration by executing reconfiguration requests in such a manner as to ensure the (partial) validity of all reachable configurations. We evaluate our approach on a simple web application deployed on the Heroku cloud platform. Experimental results show that the overheads induced by generated run-time models on systems involving up to 300 features are negligible, demonstrating the practical interest of our approach.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Commentaire :
Part 6: Run-Time Changes
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Coordination-23.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Coordination-23.pdf
- Accès libre
- Accéder au document