Statistically Prioritized and Contextualized ...
Document type :
Article dans une revue scientifique: Article original
DOI :
PMID :
Permalink :
Title :
Statistically Prioritized and Contextualized Clinical Decision Support Systems, the Future of Adverse Drug Events Prevention?
Author(s) :
Chazard, Emmanuel [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Beuscart, Jean-Baptiste [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Rochoy, Michael [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Dalleur, Olivia [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Décaudin, Bertrand [Auteur]
Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA) - ULR 7365
Odou, Pascal [Auteur]
Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA) - ULR 7365
Ficheur, Gregoire [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]

METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Beuscart, Jean-Baptiste [Auteur]

METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Rochoy, Michael [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Dalleur, Olivia [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Décaudin, Bertrand [Auteur]

Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA) - ULR 7365
Odou, Pascal [Auteur]

Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA) - ULR 7365
Ficheur, Gregoire [Auteur]

Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Journal title :
Studies in Health Technology and Informatics
Abbreviated title :
Stud Health Technol Inform
Volume number :
270
Pages :
683-687
Publication date :
2020-06
ISSN :
1879-8365
English keyword(s) :
Adverse drug events
Clinical decision support systems
data reuse
Clinical decision support systems
data reuse
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Clinical decision support systems (CDSS) fail to prevent adverse drug events (ADE), notably due to over-alerting and alert-fatigue. Many methods have been proposed in the literature to reduce over-alerting of CDSS: enhancing ...
Show more >Clinical decision support systems (CDSS) fail to prevent adverse drug events (ADE), notably due to over-alerting and alert-fatigue. Many methods have been proposed in the literature to reduce over-alerting of CDSS: enhancing post-alert medical management, taking into account user-related context, patient-related context and temporal aspects, improving medical relevance of alerts, filtering or tiering alerts on the basis of their strength of evidence, their severity, their override rate, or the probability of outcome. This paper analyzes the different options, and proposes the setup of SPC-CDSS (statistically prioritized and contextualized CDSS). The principle is that, when a SPC-CDSS is implemented in a medical unit, it first reuses actual clinical data, and searches for traceable outcomes. Then, for each rule trying to prevent this outcome, the SPC-CDSS automatically estimates the conditional probability of outcome knowing that the conditions of the rule are met, by retrospective secondary use of data. The alert can be turned off below a chosen probability threshold. This probability computation can be performed in each medical unit, in order to take into account its sensitivity to context.Show less >
Show more >Clinical decision support systems (CDSS) fail to prevent adverse drug events (ADE), notably due to over-alerting and alert-fatigue. Many methods have been proposed in the literature to reduce over-alerting of CDSS: enhancing post-alert medical management, taking into account user-related context, patient-related context and temporal aspects, improving medical relevance of alerts, filtering or tiering alerts on the basis of their strength of evidence, their severity, their override rate, or the probability of outcome. This paper analyzes the different options, and proposes the setup of SPC-CDSS (statistically prioritized and contextualized CDSS). The principle is that, when a SPC-CDSS is implemented in a medical unit, it first reuses actual clinical data, and searches for traceable outcomes. Then, for each rule trying to prevent this outcome, the SPC-CDSS automatically estimates the conditional probability of outcome knowing that the conditions of the rule are met, by retrospective secondary use of data. The alert can be turned off below a chosen probability threshold. This probability computation can be performed in each medical unit, in order to take into account its sensitivity to context.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CHU Lille
CHU Lille
Collections :
Submission date :
2023-05-25T03:32:06Z
2024-06-13T12:08:08Z
2024-06-13T12:08:08Z