Hybrid monometallic and bimetallic ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Hybrid monometallic and bimetallic copper-palladium zeolite catalysts for direct synthesis of dimethyl ether from CO2
Auteur(s) :
Navarro Jaen, Sara [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Virginie, Mirella [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Morin, Jean-Charles [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Thuriot-Roukos, Joëlle [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Wojcieszak, Robert [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Virginie, Mirella [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Morin, Jean-Charles [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Thuriot-Roukos, Joëlle [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Wojcieszak, Robert [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Titre de la revue :
New Journal of Chemistry
Nom court de la revue :
New J. Chem.
Numéro :
-
Pagination :
-
Date de publication :
2022-02-13
ISSN :
1144-0546
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
Currently, carbon dioxide in the atmosphere is the major contributor toward global climate change. Direct CO2 hydrogenation to dimethyl ether produces an important platform molecule for the synthesis of fuels and chemicals ...
Lire la suite >Currently, carbon dioxide in the atmosphere is the major contributor toward global climate change. Direct CO2 hydrogenation to dimethyl ether produces an important platform molecule for the synthesis of fuels and chemicals and at the same time, utilizes large amounts of this greenhouse gas. In this paper, we prepared a series of hybrid catalysts, which are composed of alumina supported copper–palladium nanoparticles and HZSM-5 zeolite for the direct synthesis of dimethyl ether from CO2. Copper active sites showed a higher intrinsic activity for CO2 hydrogenation compared to palladium. The low palladium content in the copper–palladium bimetallic catalysts was particularly beneficial for the dimethyl ether production. Undesirable methane and ethane production was completely suppressed, while the dimethyl ether selectivity was considerably increased. Extensive catalyst characterization combined with catalytic measurements was indicative of the presence of copper and palladium monometallic and bimetallic particles with different sizes and reducibility in the hybrid catalysts. The presence of even small amounts of palladium significantly improved copper reducibility and copper dispersion. Some decrease in the Brønsted acidity in the copper containing catalysts was due to the migration of unreduced copper ions in the zeolite channels during the reduction. The methanol dehydration to dimethyl ether was only slightly affected by the amounts of Brønsted acid sites in the hybrid catalysts.Lire moins >
Lire la suite >Currently, carbon dioxide in the atmosphere is the major contributor toward global climate change. Direct CO2 hydrogenation to dimethyl ether produces an important platform molecule for the synthesis of fuels and chemicals and at the same time, utilizes large amounts of this greenhouse gas. In this paper, we prepared a series of hybrid catalysts, which are composed of alumina supported copper–palladium nanoparticles and HZSM-5 zeolite for the direct synthesis of dimethyl ether from CO2. Copper active sites showed a higher intrinsic activity for CO2 hydrogenation compared to palladium. The low palladium content in the copper–palladium bimetallic catalysts was particularly beneficial for the dimethyl ether production. Undesirable methane and ethane production was completely suppressed, while the dimethyl ether selectivity was considerably increased. Extensive catalyst characterization combined with catalytic measurements was indicative of the presence of copper and palladium monometallic and bimetallic particles with different sizes and reducibility in the hybrid catalysts. The presence of even small amounts of palladium significantly improved copper reducibility and copper dispersion. Some decrease in the Brønsted acidity in the copper containing catalysts was due to the migration of unreduced copper ions in the zeolite channels during the reduction. The methanol dehydration to dimethyl ether was only slightly affected by the amounts of Brønsted acid sites in the hybrid catalysts.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
Catalyse pour l’énergie et la synthèse de molécules plateforme (CEMOP)
Date de dépôt :
2023-06-05T08:09:55Z
2023-06-27T12:23:42Z
2023-06-27T12:23:42Z