Multi-scale model to predict the ballistic ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Multi-scale model to predict the ballistic impact behavior of multi-layer plain-woven fabrics
Author(s) :
Minh, C. H. [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Boussu, francois [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Imad, A. [Auteur]
Université de Lille
Kanit, T. [Auteur]
Université de Lille
Crepin, D. [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Boussu, francois [Auteur]

École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Imad, A. [Auteur]
Université de Lille
Kanit, T. [Auteur]
Université de Lille
Crepin, D. [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Journal title :
International Journal of Computational Methods
Abbreviated title :
Int. J. Comput. Methods
Volume number :
11
Publication date :
2019-03-13
ISSN :
0219-8762
English keyword(s) :
FEM
multi-scale modeling
impact behavior
textile fabric
failure
boundary conditions
multi-scale modeling
impact behavior
textile fabric
failure
boundary conditions
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
This paper presents a multi-scale model that can predict the ballistic impact behavior of multi-layer plain-woven fabrics using the finite element method (FEM). Multi-layer fabrics of 30.5 × 30.5 cm, woven by high performance ...
Show more >This paper presents a multi-scale model that can predict the ballistic impact behavior of multi-layer plain-woven fabrics using the finite element method (FEM). Multi-layer fabrics of 30.5 × 30.5 cm, woven by high performance yarns Kevlar® 29 3000 denier, are impacted by a 0.3 fragment simulating projectile (FSP). Using a multi-scale approach, behavior of multi-layer fabrics subjected to different impact velocities is numerically analyzed. Ballistic limit of the fabric can also be predicted. The multi-scale model shows an effective gain of computation time in comparison with current mesoscopic ones. Computational results show a good agreement with experimental data.Show less >
Show more >This paper presents a multi-scale model that can predict the ballistic impact behavior of multi-layer plain-woven fabrics using the finite element method (FEM). Multi-layer fabrics of 30.5 × 30.5 cm, woven by high performance yarns Kevlar® 29 3000 denier, are impacted by a 0.3 fragment simulating projectile (FSP). Using a multi-scale approach, behavior of multi-layer fabrics subjected to different impact velocities is numerically analyzed. Ballistic limit of the fabric can also be predicted. The multi-scale model shows an effective gain of computation time in comparison with current mesoscopic ones. Computational results show a good agreement with experimental data.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
ENSAIT
Junia HEI
ENSAIT
Junia HEI
Collections :
Submission date :
2023-06-20T02:33:20Z
2024-02-27T16:18:04Z
2024-02-27T16:18:04Z