Garment Fit Evaluation Using Machine ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Garment Fit Evaluation Using Machine Learning Technology
Auteur(s) :
Liu, Kaixuan [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Université de Lille
Xi'an Polytechnic University
École nationale supérieure des arts et industries textiles [ENSAIT]
Zeng, Xianyi [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Université Lille Nord (France)
Bruniaux, Pascal [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Tao, Xuyuan [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Université de Lille
École nationale supérieure des arts et industries textiles [ENSAIT]
Kamalha, Edwin [Auteur]
Génie et Matériaux Textiles [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Wang, Jianping [Auteur]
Donghua University [Shanghai]
Génie et Matériaux Textiles [GEMTEX]
Université de Lille
Xi'an Polytechnic University
École nationale supérieure des arts et industries textiles [ENSAIT]
Zeng, Xianyi [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Université Lille Nord (France)
Bruniaux, Pascal [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Tao, Xuyuan [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Université de Lille
École nationale supérieure des arts et industries textiles [ENSAIT]
Kamalha, Edwin [Auteur]
Génie et Matériaux Textiles [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Wang, Jianping [Auteur]
Donghua University [Shanghai]
Titre de la revue :
Springer Series in Fashion Business
Nom court de la revue :
Springer Series in Fashion Business
Numéro :
-
Pagination :
273-288
Date de publication :
2018-05-17
ISSN :
2366-8776
Mot(s)-clé(s) en anglais :
Digital clothing pressure
Support vector machines
Naive Bayes Active learning
Ease allowance
Real try-on
Support vector machines
Naive Bayes Active learning
Ease allowance
Real try-on
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Presently, garment fit evaluation mainly focuses on real try-on and rarely deals with virtual try-on. With the rapid development of e-commerce, there is a profound growth of garment purchases through the Internet. In this ...
Lire la suite >Presently, garment fit evaluation mainly focuses on real try-on and rarely deals with virtual try-on. With the rapid development of e-commerce, there is a profound growth of garment purchases through the Internet. In this context, fit evaluation of virtual garment try-on is vital in the clothing industry. In this chapter, we propose a Naive Bayes-based model to evaluate garment fit. The inputs of the proposed model are digital clothing pressures of different body parts, generated from a 3D garment CAD software, while the output is the predicted result of garment fit (fit or unfit). To construct and train the proposed model, data on digital clothing pressures and garment real fit was collected for input and output learning data, respectively. By learning from these data, our proposed model can predict garment fit rapidly and automatically without any real try-on; therefore, it can be applied to remote garment fit evaluation in the context of e-shopping. Finally, the effectiveness of our proposed method was validated using a set of test samples. Test results showed that digital clothing pressure is a better index than ease allowance to evaluate garment fit, and machine learning-based garment fit evaluation methods have higher prediction accuracies.Lire moins >
Lire la suite >Presently, garment fit evaluation mainly focuses on real try-on and rarely deals with virtual try-on. With the rapid development of e-commerce, there is a profound growth of garment purchases through the Internet. In this context, fit evaluation of virtual garment try-on is vital in the clothing industry. In this chapter, we propose a Naive Bayes-based model to evaluate garment fit. The inputs of the proposed model are digital clothing pressures of different body parts, generated from a 3D garment CAD software, while the output is the predicted result of garment fit (fit or unfit). To construct and train the proposed model, data on digital clothing pressures and garment real fit was collected for input and output learning data, respectively. By learning from these data, our proposed model can predict garment fit rapidly and automatically without any real try-on; therefore, it can be applied to remote garment fit evaluation in the context of e-shopping. Finally, the effectiveness of our proposed method was validated using a set of test samples. Test results showed that digital clothing pressure is a better index than ease allowance to evaluate garment fit, and machine learning-based garment fit evaluation methods have higher prediction accuracies.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSAIT
Junia HEI
ENSAIT
Junia HEI
Collections :
Date de dépôt :
2023-06-20T10:59:10Z
2024-02-29T09:08:35Z
2024-02-29T09:08:35Z