Mesoscopic Klein-Schwinger effect in graphene
Document type :
Article dans une revue scientifique: Article original
Title :
Mesoscopic Klein-Schwinger effect in graphene
Author(s) :
Schmitt, A. [Auteur correspondant]
Physique Mésoscopique
Vallet, P. [Auteur]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Mele, David [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Physique Mésoscopique
Rosticher, M. [Auteur]
Laboratoire de physique de l'ENS - ENS Paris [LPENS]
Taniguchi, T. [Auteur]
National Institute for Materials Science [NIMS]
Watanabe, K. [Auteur]
National Institute for Materials Science [NIMS]
Bocquillon, E. [Auteur]
Physikalisches Institut [Köln]
Fève, G. [Auteur]
Physique Mésoscopique
Berroir, Jean-Marc [Auteur]
Physique Mésoscopique
Voisin, Christophe [Auteur]
Nano-Optique
Cayssol, J. [Auteur]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Goerbig, M. [Auteur]
Laboratoire de Physique des Solides [LPS]
Troost, J. [Auteur]
Champs, Gravitation et Cordes
Baudin, E. [Auteur correspondant]
Nano-Optique
Plaçais, Bernard [Auteur correspondant]
Physique Mésoscopique
Physique Mésoscopique
Vallet, P. [Auteur]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Mele, David [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Physique Mésoscopique
Rosticher, M. [Auteur]
Laboratoire de physique de l'ENS - ENS Paris [LPENS]
Taniguchi, T. [Auteur]
National Institute for Materials Science [NIMS]
Watanabe, K. [Auteur]
National Institute for Materials Science [NIMS]
Bocquillon, E. [Auteur]
Physikalisches Institut [Köln]
Fève, G. [Auteur]
Physique Mésoscopique
Berroir, Jean-Marc [Auteur]
Physique Mésoscopique
Voisin, Christophe [Auteur]
Nano-Optique
Cayssol, J. [Auteur]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Goerbig, M. [Auteur]
Laboratoire de Physique des Solides [LPS]
Troost, J. [Auteur]
Champs, Gravitation et Cordes
Baudin, E. [Auteur correspondant]
Nano-Optique
Plaçais, Bernard [Auteur correspondant]
Physique Mésoscopique
Journal title :
Nature Physics
Pages :
830-835
Publisher :
Nature Publishing Group [2005-....]
Publication date :
2023-06
ISSN :
1745-2473
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Systèmes mésoscopiques et effet Hall quantique [cond-mat.mes-hall]
English abstract : [en]
Strong electric field annihilation by particle–antiparticle pair creation, also known as the Schwinger effect, is a non-perturbative prediction of quantum electrodynamics. Its experimental demonstration remains elusive, ...
Show more >Strong electric field annihilation by particle–antiparticle pair creation, also known as the Schwinger effect, is a non-perturbative prediction of quantum electrodynamics. Its experimental demonstration remains elusive, as threshold electric fields are extremely strong and beyond current reach. Here, we propose a mesoscopic variant of the Schwinger effect in graphene, which hosts Dirac fermions with an approximate electron–hole symmetry. Using transport measurements, we report on universal one-dimensional Schwinger conductance at the pinchoff of ballistic graphene transistors. Strong pinchoff electric fields are concentrated within approximately 1 μm of the transistor’s drain and induce Schwinger electron–hole pair creation at saturation. This effect precedes a collective instability towards an ohmic Zener regime, which is rejected at twice the pinchoff voltage in long devices. These observations advance our understanding of current saturation limits in ballistic graphene and provide a direction for further quantum electrodynamic experiments in the laboratory.Show less >
Show more >Strong electric field annihilation by particle–antiparticle pair creation, also known as the Schwinger effect, is a non-perturbative prediction of quantum electrodynamics. Its experimental demonstration remains elusive, as threshold electric fields are extremely strong and beyond current reach. Here, we propose a mesoscopic variant of the Schwinger effect in graphene, which hosts Dirac fermions with an approximate electron–hole symmetry. Using transport measurements, we report on universal one-dimensional Schwinger conductance at the pinchoff of ballistic graphene transistors. Strong pinchoff electric fields are concentrated within approximately 1 μm of the transistor’s drain and induce Schwinger electron–hole pair creation at saturation. This effect precedes a collective instability towards an ohmic Zener regime, which is rejected at twice the pinchoff voltage in long devices. These observations advance our understanding of current saturation limits in ballistic graphene and provide a direction for further quantum electrodynamic experiments in the laboratory.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- document
- Open access
- Access the document
- Mesoscopic%20Klein-Schwinger%20effect%20in%20graphene.pdf
- Open access
- Access the document
- 2207.13400
- Open access
- Access the document