Exploring Lignification Complexity in Plant ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Exploring Lignification Complexity in Plant Cell Walls with Airyscan Super-resolution Microscopy and Bioorthogonal Chemistry
Author(s) :
Simon, Clemence [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Morel, Oriane [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Neutelings, Godfrey [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Baldacci-Cresp, Fabien [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Baucher, Marie [Auteur]
Faculté des Sciences [Bruxelles] [ULB]
Spriet, Corentin [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Plateformes Lilloises en Biologie et Santé - UAR 2014 - US 41 [PLBS]
Biot, Christophe [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Hawkins, Simon [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Lion, Cedric [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Morel, Oriane [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Neutelings, Godfrey [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Baldacci-Cresp, Fabien [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Baucher, Marie [Auteur]
Faculté des Sciences [Bruxelles] [ULB]
Spriet, Corentin [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Plateformes Lilloises en Biologie et Santé - UAR 2014 - US 41 [PLBS]
Biot, Christophe [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Hawkins, Simon [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Lion, Cedric [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Journal title :
Chemical & Biomedical Imaging
Abbreviated title :
Chem. Biomed. Imaging
Volume number :
1
Pages :
479−487
Publisher :
American Chemical Society (ACS)
Publication date :
2023-07-06
ISSN :
2832-3637
English keyword(s) :
Plant chemical biology
click chemistry
bioorthogonal chemistry
super-resolution bioimaging
super-resolution bioimaging
click chemistry
bioorthogonal chemistry
super-resolution bioimaging
super-resolution bioimaging
HAL domain(s) :
Sciences du Vivant [q-bio]
Chimie/Chimie théorique et/ou physique
Chimie/Chimie théorique et/ou physique
English abstract : [en]
In this paper, we present the use of multiplex click/bioorthogonal chemistry combined with super-resolution Airyscan microscopy to track biomolecules in living systems with a focus on studying lignin formation in plant ...
Show more >In this paper, we present the use of multiplex click/bioorthogonal chemistry combined with super-resolution Airyscan microscopy to track biomolecules in living systems with a focus on studying lignin formation in plant cell walls. While laser scanning confocal microscopy (LSCM) provided insights into the tissue-scale dynamics of lignin formation and distribution in our previous reports, its limited resolution precluded an in-depth analysis of lignin composition at the unique cell wall or substructure level. To overcome this limitation, we explored the use of Airyscan microscopy, which, among the super-resolution techniques available, offers an optimal balance between performance, cost, accessibility, and ease of implementation. Our study demonstrates that a triple labeling strategy using copper-catalyzed azide–alkyne cycloaddition (CuAAC), strain-promoted azide–alkyne cycloaddition (SPAAC), and inverse electronic-demand Diels–Alder cycloaddition (IEDDA) to label modified lignin metabolic precursors can be combined with Airyscan microscopy to reveal the zones of active lignification at the single cell level with improved sensitivity and resolution. This approach enables insights into the lignin composition in wall substructures, such as pits or in wall layers that are otherwise not distinguishable by classical LSCM. Our work emphasizes the importance of studying lignin formation in plant cell walls and demonstrates the potential of combining bioorthogonal chemistry and super-resolution microscopy techniques for studying biomolecules in living systems.Show less >
Show more >In this paper, we present the use of multiplex click/bioorthogonal chemistry combined with super-resolution Airyscan microscopy to track biomolecules in living systems with a focus on studying lignin formation in plant cell walls. While laser scanning confocal microscopy (LSCM) provided insights into the tissue-scale dynamics of lignin formation and distribution in our previous reports, its limited resolution precluded an in-depth analysis of lignin composition at the unique cell wall or substructure level. To overcome this limitation, we explored the use of Airyscan microscopy, which, among the super-resolution techniques available, offers an optimal balance between performance, cost, accessibility, and ease of implementation. Our study demonstrates that a triple labeling strategy using copper-catalyzed azide–alkyne cycloaddition (CuAAC), strain-promoted azide–alkyne cycloaddition (SPAAC), and inverse electronic-demand Diels–Alder cycloaddition (IEDDA) to label modified lignin metabolic precursors can be combined with Airyscan microscopy to reveal the zones of active lignification at the single cell level with improved sensitivity and resolution. This approach enables insights into the lignin composition in wall substructures, such as pits or in wall layers that are otherwise not distinguishable by classical LSCM. Our work emphasizes the importance of studying lignin formation in plant cell walls and demonstrates the potential of combining bioorthogonal chemistry and super-resolution microscopy techniques for studying biomolecules in living systems.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Research team(s) :
Chemical Glycobiology
Fibres végétales
Fibres végétales
Submission date :
2023-07-17T14:38:07Z
2023-08-31T16:06:49Z
2023-08-31T16:06:49Z
Files
- Exploring Lignification Complexity in Plant Cell Walls with Airyscan Super-resolution Microscopy and Bioorthogonal Chemistry.pdf
- Version éditeur
- Open access
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States