New insights into the pathogenicity of ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
New insights into the pathogenicity of TMEM165 variants using structural modeling based on AlphaFold 2 predictions
Author(s) :
Legrand, Dominique [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Herbaut, Melissandre [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Durin, Zoe [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Brysbaert, Guillaume [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Bardor, Muriel [Auteur]
Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale [Glyco-MEV]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Lensink, Marc [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Foulquier, Francois [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Herbaut, Melissandre [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Durin, Zoe [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Brysbaert, Guillaume [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Bardor, Muriel [Auteur]
Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale [Glyco-MEV]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Lensink, Marc [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Foulquier, Francois [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Journal title :
Computational and Structural Biotechnology Journal
Abbreviated title :
Computational and Structural Biotechnology Journal
Volume number :
21
Pages :
3424-3436
Publisher :
Elsevier BV
Publication date :
2023-06-17
ISSN :
2001-0370
English keyword(s) :
TMEM165
CDG
Glycosylation
Manganese
Modeling
CDG
Glycosylation
Manganese
Modeling
HAL domain(s) :
Sciences du Vivant [q-bio]
Chimie/Chimie théorique et/ou physique
Chimie/Chimie théorique et/ou physique
English abstract : [en]
TMEM165 is a Golgi protein playing a crucial role in Mn2+ transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus ...
Show more >TMEM165 is a Golgi protein playing a crucial role in Mn2+ transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus motifs E-φ-G-D-[KR]-[TS] characterizing the CaCA2/UPF0016 family, presumably important for the transport of Mn2+ which is essential for the function of many Golgi glycosylation enzymes. Others, like the G>R304 mutation, are far away from these motifs in the sequence. Until recently, the classical membrane protein topology prediction methods were unable to provide a clear picture of the organization of TMEM165 inside the cell membrane, or to explain in a convincing manner the impact of patient and experimentally-generated mutations on the transporter function of TMEM165. In this study, AlphaFold 2 was used to build a TMEM165 model that was then refined by molecular dynamics simulation with membrane lipids and water. This model provides a realistic picture of the 3D protein scaffold formed from a two-fold repeat of three transmembrane helices/domains where the consensus motifs face each other to form a putative acidic cation-binding site at the cytosolic side of the protein. It sheds new light on the impact of mutations on the transporter function of TMEM165, found in patients and studied experimentally in vitro, formerly and within this study. More particularly and very interestingly, this model explains the impact of the G>R304 mutation on TMEM165’s function. These findings provide great confidence in the predicted TMEM165 model whose structural features are discussed in the study and compared to other structural and functional TMEM165 homologs from the CaCA2/UPF0016 family and the LysE superfamily.Show less >
Show more >TMEM165 is a Golgi protein playing a crucial role in Mn2+ transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus motifs E-φ-G-D-[KR]-[TS] characterizing the CaCA2/UPF0016 family, presumably important for the transport of Mn2+ which is essential for the function of many Golgi glycosylation enzymes. Others, like the G>R304 mutation, are far away from these motifs in the sequence. Until recently, the classical membrane protein topology prediction methods were unable to provide a clear picture of the organization of TMEM165 inside the cell membrane, or to explain in a convincing manner the impact of patient and experimentally-generated mutations on the transporter function of TMEM165. In this study, AlphaFold 2 was used to build a TMEM165 model that was then refined by molecular dynamics simulation with membrane lipids and water. This model provides a realistic picture of the 3D protein scaffold formed from a two-fold repeat of three transmembrane helices/domains where the consensus motifs face each other to form a putative acidic cation-binding site at the cytosolic side of the protein. It sheds new light on the impact of mutations on the transporter function of TMEM165, found in patients and studied experimentally in vitro, formerly and within this study. More particularly and very interestingly, this model explains the impact of the G>R304 mutation on TMEM165’s function. These findings provide great confidence in the predicted TMEM165 model whose structural features are discussed in the study and compared to other structural and functional TMEM165 homologs from the CaCA2/UPF0016 family and the LysE superfamily.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
ANR Project :
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Research team(s) :
Mécanismes moléculaires de la N-glycosylation et pathologies associées
Computational Molecular Systems Biology
Computational Molecular Systems Biology
Submission date :
2023-07-19T08:00:30Z
2023-08-31T16:23:17Z
2023-08-31T16:23:17Z
Files
- P23.17 legrand et al., 2023.pdf
- Version éditeur
- Open access
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States