New insights into the pathogenicity of ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
New insights into the pathogenicity of TMEM165 variants using structural modeling based on AlphaFold 2 predictions
Auteur(s) :
Legrand, Dominique [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Herbaut, Melissandre [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Durin, Zoe [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Brysbaert, Guillaume [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Bardor, Muriel [Auteur]
Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale [Glyco-MEV]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Lensink, Marc [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Foulquier, Francois [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Herbaut, Melissandre [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Durin, Zoe [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Brysbaert, Guillaume [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Bardor, Muriel [Auteur]
Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale [Glyco-MEV]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Lensink, Marc [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Foulquier, Francois [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Titre de la revue :
Computational and Structural Biotechnology Journal
Nom court de la revue :
Computational and Structural Biotechnology Journal
Numéro :
21
Pagination :
3424-3436
Éditeur :
Elsevier BV
Date de publication :
2023-06-17
ISSN :
2001-0370
Mot(s)-clé(s) en anglais :
TMEM165
CDG
Glycosylation
Manganese
Modeling
CDG
Glycosylation
Manganese
Modeling
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Chimie/Chimie théorique et/ou physique
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
TMEM165 is a Golgi protein playing a crucial role in Mn2+ transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus ...
Lire la suite >TMEM165 is a Golgi protein playing a crucial role in Mn2+ transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus motifs E-φ-G-D-[KR]-[TS] characterizing the CaCA2/UPF0016 family, presumably important for the transport of Mn2+ which is essential for the function of many Golgi glycosylation enzymes. Others, like the G>R304 mutation, are far away from these motifs in the sequence. Until recently, the classical membrane protein topology prediction methods were unable to provide a clear picture of the organization of TMEM165 inside the cell membrane, or to explain in a convincing manner the impact of patient and experimentally-generated mutations on the transporter function of TMEM165. In this study, AlphaFold 2 was used to build a TMEM165 model that was then refined by molecular dynamics simulation with membrane lipids and water. This model provides a realistic picture of the 3D protein scaffold formed from a two-fold repeat of three transmembrane helices/domains where the consensus motifs face each other to form a putative acidic cation-binding site at the cytosolic side of the protein. It sheds new light on the impact of mutations on the transporter function of TMEM165, found in patients and studied experimentally in vitro, formerly and within this study. More particularly and very interestingly, this model explains the impact of the G>R304 mutation on TMEM165’s function. These findings provide great confidence in the predicted TMEM165 model whose structural features are discussed in the study and compared to other structural and functional TMEM165 homologs from the CaCA2/UPF0016 family and the LysE superfamily.Lire moins >
Lire la suite >TMEM165 is a Golgi protein playing a crucial role in Mn2+ transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus motifs E-φ-G-D-[KR]-[TS] characterizing the CaCA2/UPF0016 family, presumably important for the transport of Mn2+ which is essential for the function of many Golgi glycosylation enzymes. Others, like the G>R304 mutation, are far away from these motifs in the sequence. Until recently, the classical membrane protein topology prediction methods were unable to provide a clear picture of the organization of TMEM165 inside the cell membrane, or to explain in a convincing manner the impact of patient and experimentally-generated mutations on the transporter function of TMEM165. In this study, AlphaFold 2 was used to build a TMEM165 model that was then refined by molecular dynamics simulation with membrane lipids and water. This model provides a realistic picture of the 3D protein scaffold formed from a two-fold repeat of three transmembrane helices/domains where the consensus motifs face each other to form a putative acidic cation-binding site at the cytosolic side of the protein. It sheds new light on the impact of mutations on the transporter function of TMEM165, found in patients and studied experimentally in vitro, formerly and within this study. More particularly and very interestingly, this model explains the impact of the G>R304 mutation on TMEM165’s function. These findings provide great confidence in the predicted TMEM165 model whose structural features are discussed in the study and compared to other structural and functional TMEM165 homologs from the CaCA2/UPF0016 family and the LysE superfamily.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Établissement(s) :
Université de Lille
CNRS
CNRS
Équipe(s) de recherche :
Mécanismes moléculaires de la N-glycosylation et pathologies associées
Computational Molecular Systems Biology
Computational Molecular Systems Biology
Date de dépôt :
2023-07-19T08:00:30Z
2023-08-31T16:23:17Z
2023-08-31T16:23:17Z
Fichiers
- P23.17 legrand et al., 2023.pdf
- Version éditeur
- Accès libre
- Accéder au document