Contribution of Ribbon-Structured SiO2 ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Contribution of Ribbon-Structured SiO2 Films to AlN-Based and AlN/Diamond-Based Lamb Wave Resonators
Author(s) :
Moutaouekkil, Mohammed [Auteur correspondant]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Université Mohammed Premier [Oujda] = Université Mohammed Ier
Streque, Jérémy [Auteur]
Institut Jean Lamour [IJL]
Marbouh, Othmane [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Boudouti, El Houssaine [Auteur]
Université Mohammed Premier [Oujda] = Université Mohammed Ier
Elmazria, Omar [Auteur]
Institut Jean Lamour [IJL]
Pernod, Philippe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Bou Matar Lacaze, Olivier [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Talbi, Abdelkrim [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Université Mohammed Premier [Oujda] = Université Mohammed Ier
Streque, Jérémy [Auteur]
Institut Jean Lamour [IJL]
Marbouh, Othmane [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Boudouti, El Houssaine [Auteur]
Université Mohammed Premier [Oujda] = Université Mohammed Ier
Elmazria, Omar [Auteur]
Institut Jean Lamour [IJL]
Pernod, Philippe [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Bou Matar Lacaze, Olivier [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Talbi, Abdelkrim [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Sensors
Pages :
6284
Publisher :
MDPI
Publication date :
2023-07-10
ISSN :
1424-8220
English keyword(s) :
S0 Lamb-wave mode
K2
AlN/SiO2 bi-layer
SiO2 ribbons
TCF
K2
AlN/SiO2 bi-layer
SiO2 ribbons
TCF
HAL domain(s) :
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
English abstract : [en]
New designs based on S0 Lamb modes in AlN thin layer resonating structures coupled with the implementation of structural elements in SiO2, are theoretically analyzed by the Finite Element Method (FEM). This study compares ...
Show more >New designs based on S0 Lamb modes in AlN thin layer resonating structures coupled with the implementation of structural elements in SiO2, are theoretically analyzed by the Finite Element Method (FEM). This study compares the typical characteristics of different interdigital transducer (IDTs) configurations, involving either a continuous SiO2 cap layer, or structured SiO2 elements, showing their performance in the usual terms of electromechanical coupling coefficient (K2), phase velocity, and temperature coefficient of frequency (TCF), by varying structural parameters and boundary conditions. This paper shows how to reach temperature-compensated, high-performance resonator structures based on ribbon-structured SiO2 capping. The addition of a thin diamond layer can also improve the velocity and electromechanical coupling coefficient, while keeping zero TCF and increasing the solidity of the membranes. Beyond the increase in performance allowed by such resonator configurations, their inherent structure shows additional benefits in terms of passivation, which makes them particularly relevant for sensing applications in stern environments.Show less >
Show more >New designs based on S0 Lamb modes in AlN thin layer resonating structures coupled with the implementation of structural elements in SiO2, are theoretically analyzed by the Finite Element Method (FEM). This study compares the typical characteristics of different interdigital transducer (IDTs) configurations, involving either a continuous SiO2 cap layer, or structured SiO2 elements, showing their performance in the usual terms of electromechanical coupling coefficient (K2), phase velocity, and temperature coefficient of frequency (TCF), by varying structural parameters and boundary conditions. This paper shows how to reach temperature-compensated, high-performance resonator structures based on ribbon-structured SiO2 capping. The addition of a thin diamond layer can also improve the velocity and electromechanical coupling coefficient, while keeping zero TCF and increasing the solidity of the membranes. Beyond the increase in performance allowed by such resonator configurations, their inherent structure shows additional benefits in terms of passivation, which makes them particularly relevant for sensing applications in stern environments.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- document
- Open access
- Access the document
- Moutaouekkil_2023_sensors-23-06284-v2.pdf
- Open access
- Access the document
- Open access
- Access the document