New insights into the chemical composition ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
New insights into the chemical composition and formation mechanisms of secondary organic aerosols produced in the ozonolysis of limonene
Author(s) :
Jacob, F. [Auteur]
Impact de l'environnement chimique sur la santé humaine - ULR 4483 [IMPECS]
Houzel, N. [Auteur]
Genevray, P. [Auteur]
Clety, C. [Auteur]
Coeur, C. [Auteur]
Perdrix, E. [Auteur]
Alleman, L. Y. [Auteur]
Anthérieu, Sébastien [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Garçon, Guillaume [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Dhont, G. [Auteur]
Cuisset, A. [Auteur]
Lo-Guidice, Jean-Marc [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Tomas, A. [Auteur]
Impact de l'environnement chimique sur la santé humaine - ULR 4483 [IMPECS]
Houzel, N. [Auteur]
Genevray, P. [Auteur]
Clety, C. [Auteur]
Coeur, C. [Auteur]
Perdrix, E. [Auteur]
Alleman, L. Y. [Auteur]
Anthérieu, Sébastien [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Garçon, Guillaume [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Dhont, G. [Auteur]
Cuisset, A. [Auteur]
Lo-Guidice, Jean-Marc [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Tomas, A. [Auteur]
Journal title :
Journal of Aerosol Science
Abbreviated title :
J. Aerosol. Sci.
Volume number :
173
Pages :
-
Publication date :
2023-07-01
ISSN :
0021-8502
English keyword(s) :
Terpene
Ozone
SOA
Oligomers
Nucleation
Complexation energy
Ozone
SOA
Oligomers
Nucleation
Complexation energy
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Limonene is a wide-spread volatile organic compound in the atmosphere. Its fast reaction with ozone leads to a large range of low-volatility oxygenated products that can form aerosols through gas-to-particle conversion ...
Show more >Limonene is a wide-spread volatile organic compound in the atmosphere. Its fast reaction with ozone leads to a large range of low-volatility oxygenated products that can form aerosols through gas-to-particle conversion processes. However, the physical and chemical mechanisms at the origin of particle formation are still fairly unknown despite the general importance of atmospheric aerosols towards health and climate. In the present work, we combined experimental and theoretical approaches to potentially decipher new significant mechanisms in the ozonolysis of limonene. After a thorough analysis of secondary organic aerosol (SOA) chemical composition highlighting for the first time the formation of oligomers up to heptamer structures as well as linear organic diacids, we proposed a formation mechanism involving non-covalent hydrogen bonding implying carboxylic/carbonyl/hydroxy groups. Theoretical quantum chemical calculations on dimers and trimers confirmed the stability of such structures. Thus, the present results highlight the formation of large oligomeric molecules whose atmospheric fate and health impacts need to be investigated. More generally, it is suggested that these non-covalent H-bonds play a role in the first steps of SOA formation from terpene oxidation in the atmosphere.Show less >
Show more >Limonene is a wide-spread volatile organic compound in the atmosphere. Its fast reaction with ozone leads to a large range of low-volatility oxygenated products that can form aerosols through gas-to-particle conversion processes. However, the physical and chemical mechanisms at the origin of particle formation are still fairly unknown despite the general importance of atmospheric aerosols towards health and climate. In the present work, we combined experimental and theoretical approaches to potentially decipher new significant mechanisms in the ozonolysis of limonene. After a thorough analysis of secondary organic aerosol (SOA) chemical composition highlighting for the first time the formation of oligomers up to heptamer structures as well as linear organic diacids, we proposed a formation mechanism involving non-covalent hydrogen bonding implying carboxylic/carbonyl/hydroxy groups. Theoretical quantum chemical calculations on dimers and trimers confirmed the stability of such structures. Thus, the present results highlight the formation of large oligomeric molecules whose atmospheric fate and health impacts need to be investigated. More generally, it is suggested that these non-covalent H-bonds play a role in the first steps of SOA formation from terpene oxidation in the atmosphere.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CHU Lille
Institut Pasteur de Lille
CHU Lille
Institut Pasteur de Lille
Submission date :
2023-10-20T06:45:30Z
2024-03-13T15:43:06Z
2024-03-13T15:43:06Z
Files
- document
- Open access
- Access the document