Low-Frequency Raman Spectroscopy: An ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Low-Frequency Raman Spectroscopy: An Exceptional Tool for Exploring Metastability Driven States Induced by Dehydration
Author(s) :
Guinet, Yannick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Paccou, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hedoux, Alain [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Paccou, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hedoux, Alain [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Pharmaceutics
Volume number :
15
Pages :
1955
Publisher :
MDPI
Publication date :
2023-07-15
ISSN :
1999-4923
English keyword(s) :
theophylline
caffeine
driven state
low-frequency Raman spectroscopy
dehydration kinetics
caffeine
driven state
low-frequency Raman spectroscopy
dehydration kinetics
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes désordonnés et réseaux de neurones [cond-mat.dis-nn]
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes désordonnés et réseaux de neurones [cond-mat.dis-nn]
English abstract : [en]
The use of low-frequency Raman spectroscopy (LFRS; ω < 150 cm−1) is booming in the pharmaceutical industry. Specific processing of spectra is required to use the wealth of information contained in this spectral region. ...
Show more >The use of low-frequency Raman spectroscopy (LFRS; ω < 150 cm−1) is booming in the pharmaceutical industry. Specific processing of spectra is required to use the wealth of information contained in this spectral region. Spectra processing and the use of LFRS for analyzing phase transformations in molecular materials are detailed herein from investigations on the devitrification of ibuprofen. LFRS was used to analyze the dehydration mechanism of two hydrates (theophylline and caffeine) of the xanthine family. Two mechanisms of solid-state transformation in theophylline were determined depending on the relative humidity (RH) and temperature. At room temperature and 1% RH, dehydration is driven by the diffusion mechanism, while under high RH (>30%), kinetic laws are typical of nucleation and growth mechanism. By increasing the RH, various metastability driven crystalline forms were obtained mimicking successive intermediate states between hydrate form and anhydrous form achieved under high RH. In contrast, the dehydration kinetics of caffeine hydrate under various RH levels can be described by only one master curve corresponding to a nucleation mechanism. Various metastability driven states were achieved depending on the RH, which can be described as intermediate between forms I and II of anhydrous caffeine.Show less >
Show more >The use of low-frequency Raman spectroscopy (LFRS; ω < 150 cm−1) is booming in the pharmaceutical industry. Specific processing of spectra is required to use the wealth of information contained in this spectral region. Spectra processing and the use of LFRS for analyzing phase transformations in molecular materials are detailed herein from investigations on the devitrification of ibuprofen. LFRS was used to analyze the dehydration mechanism of two hydrates (theophylline and caffeine) of the xanthine family. Two mechanisms of solid-state transformation in theophylline were determined depending on the relative humidity (RH) and temperature. At room temperature and 1% RH, dehydration is driven by the diffusion mechanism, while under high RH (>30%), kinetic laws are typical of nucleation and growth mechanism. By increasing the RH, various metastability driven crystalline forms were obtained mimicking successive intermediate states between hydrate form and anhydrous form achieved under high RH. In contrast, the dehydration kinetics of caffeine hydrate under various RH levels can be described by only one master curve corresponding to a nucleation mechanism. Various metastability driven states were achieved depending on the RH, which can be described as intermediate between forms I and II of anhydrous caffeine.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Matériaux Moléculaires et Thérapeutiques
Submission date :
2023-11-10T13:28:51Z
2023-11-10T13:58:02Z
2023-11-10T13:58:02Z
Files
- Low-Frequency Raman Spectroscopy-An Exceptional Tool for Exploring Metastability Driven States Induced by Dehydration.pdf
- Version éditeur
- Open access
- Access the document