Deformation Mechanisms, Microstructures, ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Deformation Mechanisms, Microstructures, and Seismic Anisotropy of Wadsleyite in the Earth's Transition Zone
Author(s) :
Ledoux, Estelle [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Saki, Morvarid [Auteur]
Institut für Geophysik [Münster]
Gay, Jeffrey-Phillip [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Krug, Matthias [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Castelnau, Olivier [Auteur]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Zhou, Wen‐Yi [Auteur]
Texas A&M University [College Station]
Zhang, Jin S. [Auteur]
Texas A&M University [College Station]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hilairet, Nadege [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bykov, Maxim [Auteur]
Bykova, Elena [Auteur]
Goethe-Universität Frankfurt am Main
Aprilis, Georgios [Auteur]
Universität Bayreuth [Deutschland] = University of Bayreuth [Germany] = Université de Bayreuth [Allemagne]
Svitlyk, Volodymyr [Auteur]
European Synchrotron Radiation Facility [ESRF]
Garbarino, Gaston [Auteur]
European Synchrotron Radiation Facility [Grenoble] [ESRF]
Sanchez‐Valle, Carmen [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Thomas, Christine [Auteur]
Institut für Geophysik [Münster]
Speziale, Sergio [Auteur]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Unité Matériaux et Transformations (UMET) - UMR 8207
Saki, Morvarid [Auteur]
Institut für Geophysik [Münster]
Gay, Jeffrey-Phillip [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Krug, Matthias [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Castelnau, Olivier [Auteur]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Zhou, Wen‐Yi [Auteur]
Texas A&M University [College Station]
Zhang, Jin S. [Auteur]
Texas A&M University [College Station]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hilairet, Nadege [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bykov, Maxim [Auteur]
Bykova, Elena [Auteur]
Goethe-Universität Frankfurt am Main
Aprilis, Georgios [Auteur]
Universität Bayreuth [Deutschland] = University of Bayreuth [Germany] = Université de Bayreuth [Allemagne]
Svitlyk, Volodymyr [Auteur]
European Synchrotron Radiation Facility [ESRF]
Garbarino, Gaston [Auteur]
European Synchrotron Radiation Facility [Grenoble] [ESRF]
Sanchez‐Valle, Carmen [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Thomas, Christine [Auteur]
Institut für Geophysik [Münster]
Speziale, Sergio [Auteur]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Journal title :
Geochemistry, Geophysics, Geosystems
Abbreviated title :
Geochem Geophys Geosyst
Volume number :
24
Pages :
e2023GC011026
Publisher :
American Geophysical Union (AGU)
Publication date :
2023-11
ISSN :
1525-2027
HAL domain(s) :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
English abstract : [en]
AbstractWadsleyite is the dominant mineral of the upper portion of the Earth's mantle transition zone (MTZ). As such, understanding plastic deformation of wadsleyite is relevant for the interpretation of observations of ...
Show more >AbstractWadsleyite is the dominant mineral of the upper portion of the Earth's mantle transition zone (MTZ). As such, understanding plastic deformation of wadsleyite is relevant for the interpretation of observations of seismic signals from this region in terms of mantle flow. Despite its relevance, however, the deformation mechanisms of wadsleyite and their effects on microstructures and anisotropy are still poorly understood. Here, we present the results of new deformation experiments on polycrystalline wadsleyite at temperatures of 1400–1770 K and pressures between 12.3 and 20.3 GPa in the laser‐heated diamond anvil cell. We rely on multigrain X‐ray crystallography to follow the evolution of individual grain orientations and extract lattice preferred orientations at the sample scale at different steps of the experiments. A comparison of experimental results of our work and the literature with polycrystal plasticity simulations, indicates that ⟨111⟩{101} is the most active slip system of dislocations in wadsleyite at all investigated conditions. Secondary slip systems such as [001](010), [100](001), and [100]{0kl}, however, play a critical role in the resulting microstructures and their activity depends on both temperature and water content, from which we extract an updated deformation map of wadsleyite at MTZ conditions. Lastly, we propose several seismic anisotropy models of the upper part of the MTZ, depending on temperature, geophysical context, and levels of hydration that will be useful for the interpretation of seismic signals from the MTZ in terms of mantle flow and water content.Show less >
Show more >AbstractWadsleyite is the dominant mineral of the upper portion of the Earth's mantle transition zone (MTZ). As such, understanding plastic deformation of wadsleyite is relevant for the interpretation of observations of seismic signals from this region in terms of mantle flow. Despite its relevance, however, the deformation mechanisms of wadsleyite and their effects on microstructures and anisotropy are still poorly understood. Here, we present the results of new deformation experiments on polycrystalline wadsleyite at temperatures of 1400–1770 K and pressures between 12.3 and 20.3 GPa in the laser‐heated diamond anvil cell. We rely on multigrain X‐ray crystallography to follow the evolution of individual grain orientations and extract lattice preferred orientations at the sample scale at different steps of the experiments. A comparison of experimental results of our work and the literature with polycrystal plasticity simulations, indicates that ⟨111⟩{101} is the most active slip system of dislocations in wadsleyite at all investigated conditions. Secondary slip systems such as [001](010), [100](001), and [100]{0kl}, however, play a critical role in the resulting microstructures and their activity depends on both temperature and water content, from which we extract an updated deformation map of wadsleyite at MTZ conditions. Lastly, we propose several seismic anisotropy models of the upper part of the MTZ, depending on temperature, geophysical context, and levels of hydration that will be useful for the interpretation of seismic signals from the MTZ in terms of mantle flow and water content.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Matériaux Terrestres et Planétaires
Submission date :
2023-11-16T08:39:09Z
2023-11-16T09:33:42Z
2023-11-16T10:15:55Z
2023-11-17T09:53:32Z
2023-11-16T09:33:42Z
2023-11-16T10:15:55Z
2023-11-17T09:53:32Z
Files
- ledoux2023ggg.pdf
- Version éditeur
- Open access
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 3.0 United States