Thermoresponsive polymers and host-guest ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Conférence plénière
URL permanente :
Titre :
Thermoresponsive polymers and host-guest chemistry: a win-win combination
Auteur(s) :
Woisel, Patrice [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Ingénierie des Systèmes Polymères
Unité Matériaux et Transformations (UMET) - UMR 8207
Ingénierie des Systèmes Polymères
Titre de la manifestation scientifique :
Scientific day ICP/A2U-Chemistry “Supramolecular Chemistry”
Ville :
Amiens
Pays :
France
Date de début de la manifestation scientifique :
2023-12
Résumé en anglais : [en]
The combination of heat-sensitive polymers and supramolecular chemistry has recently led to the development of fascinating adaptive materials. In this context, most studies have focused on exploiting host-guest interactions ...
Lire la suite >The combination of heat-sensitive polymers and supramolecular chemistry has recently led to the development of fascinating adaptive materials. In this context, most studies have focused on exploiting host-guest interactions to control the physicochemical properties of polymeric materials.1 This approach has notably enabled the creation of materials with programmable thermosensitivity and sensor properties.2 In contrast, the exploitation of polymer thermoresponsiveness to control the recognition properties of host-guest systems at the molecular level is much less developed, and a perfect understanding of the mechanisms triggering thermo-induced decomplexation or complexation is still elusive. In this communication, we will illustrate through three studies how the host-guest chemistry and the thermo-induced phase separation mechanisms can “talk together” to synergistically tune the coil↔globule transition and the complexation state of polymeric systems. The first example3 will concern a comparative analysis of the behaviour of complexes formed from different naphthalene end-functionalized LCST or UCST polymers and the electron-deficient cyclobis(paraquat-p-phenylene) tetrachloride (CBPQT4+, 4Cl-)3 host when subjected to heat treatment. This study provided an understanding of the mechanisms triggering the thermo-induced (de)complexation of such complexes. The second study will report a supramolecular approach for developing an intelligent thermoresponsive polymeric hydrogel featuring a dual temperature and time memory function based on a kinetic control of the material's (de)complexation and (re) swelling behaviours. The last study will illustrate how a thermo-induced phase separation mechanism can regulate on demand the Diels-alder reactivity of a synthetic self-complexing host-guest molecular switch CBPQT4+-Fu, consisting of an electron-rich furan unit covalently attached to the electron-deficient CBPQT4+host, with maleimide in water. Thanks to a supramolecular control over the topology of CBPQT4+-Fu combined with a thermoresponsive supramolecular regulator, we reported a rare example of decreased reactivity upon increasing temperature.Lire moins >
Lire la suite >The combination of heat-sensitive polymers and supramolecular chemistry has recently led to the development of fascinating adaptive materials. In this context, most studies have focused on exploiting host-guest interactions to control the physicochemical properties of polymeric materials.1 This approach has notably enabled the creation of materials with programmable thermosensitivity and sensor properties.2 In contrast, the exploitation of polymer thermoresponsiveness to control the recognition properties of host-guest systems at the molecular level is much less developed, and a perfect understanding of the mechanisms triggering thermo-induced decomplexation or complexation is still elusive. In this communication, we will illustrate through three studies how the host-guest chemistry and the thermo-induced phase separation mechanisms can “talk together” to synergistically tune the coil↔globule transition and the complexation state of polymeric systems. The first example3 will concern a comparative analysis of the behaviour of complexes formed from different naphthalene end-functionalized LCST or UCST polymers and the electron-deficient cyclobis(paraquat-p-phenylene) tetrachloride (CBPQT4+, 4Cl-)3 host when subjected to heat treatment. This study provided an understanding of the mechanisms triggering the thermo-induced (de)complexation of such complexes. The second study will report a supramolecular approach for developing an intelligent thermoresponsive polymeric hydrogel featuring a dual temperature and time memory function based on a kinetic control of the material's (de)complexation and (re) swelling behaviours. The last study will illustrate how a thermo-induced phase separation mechanism can regulate on demand the Diels-alder reactivity of a synthetic self-complexing host-guest molecular switch CBPQT4+-Fu, consisting of an electron-rich furan unit covalently attached to the electron-deficient CBPQT4+host, with maleimide in water. Thanks to a supramolecular control over the topology of CBPQT4+-Fu combined with a thermoresponsive supramolecular regulator, we reported a rare example of decreased reactivity upon increasing temperature.Lire moins >
Langue :
Anglais
Comité de lecture :
Non
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Date de dépôt :
2023-12-19T07:56:38Z
Fichiers
- abstract_conférence Amiens 2023.docx
- Non spécifié
- Accès libre
- Accéder au document