3D-Printed Cyclodextrin Polymer Encapsulated ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
PMID :
URL permanente :
Titre :
3D-Printed Cyclodextrin Polymer Encapsulated Wells-Dawson: A Novel Catalyst for Knoevenagel Condensation Reactions.
Auteur(s) :
Sadjadi, S. [Auteur]
Iran University of Science and Technology [Tehran] [IUST]
Rezadoust, A. M. [Auteur]
Yaghoubi, S. [Auteur]
Alzahra University
Monflier, Eric [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Heydari, A. [Auteur]
Iran University of Science and Technology [Tehran] [IUST]
Rezadoust, A. M. [Auteur]
Yaghoubi, S. [Auteur]
Alzahra University
Monflier, Eric [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Heydari, A. [Auteur]
Titre de la revue :
Acs Omega
Numéro :
8
Pagination :
45844-45853
Date de publication :
2023-12-18
ISSN :
2470-1343
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
In the pursuit of enhancing the catalytic potential of the Wells–Dawson (WD) polyoxometalate (POM) while addressing its solubility challenges, this study focuses on devising a sustainable catalyst that operates effectively ...
Lire la suite >In the pursuit of enhancing the catalytic potential of the Wells–Dawson (WD) polyoxometalate (POM) while addressing its solubility challenges, this study focuses on devising a sustainable catalyst that operates effectively in aqueous environments. Leveraging cyclodextrin (CD) polymer chemistry in conjunction with 3D printing technology, a CD nanosponge, recognized for its interaction with POMs and molecular shuttle attributes, is synthesized as a scaffold for WD immobilization. Through integration into a 3D-printed monolith framework, the supported WD species becomes embedded within the catalyst structure, facilitating its application. Extensive characterization encompassing X-ray diffraction, thermogravimetric analysis, Fourier transform infrared, scanning electron microscopy/energy-dispersive system, elemental mapping analysis, and compression testing confirms the structural integrity and viability of the resulting catalyst. The catalytic assessment of the developed catalyst in the Knoevenagel condensation reaction within aqueous settings demonstrates enhanced reusability attributed to the encapsulation within the 3D matrix. Notably, a hot filtration test provides empirical evidence of heterogeneous catalysis mode, further underpinning the catalyst’s performance and potential for sustainable applications.Lire moins >
Lire la suite >In the pursuit of enhancing the catalytic potential of the Wells–Dawson (WD) polyoxometalate (POM) while addressing its solubility challenges, this study focuses on devising a sustainable catalyst that operates effectively in aqueous environments. Leveraging cyclodextrin (CD) polymer chemistry in conjunction with 3D printing technology, a CD nanosponge, recognized for its interaction with POMs and molecular shuttle attributes, is synthesized as a scaffold for WD immobilization. Through integration into a 3D-printed monolith framework, the supported WD species becomes embedded within the catalyst structure, facilitating its application. Extensive characterization encompassing X-ray diffraction, thermogravimetric analysis, Fourier transform infrared, scanning electron microscopy/energy-dispersive system, elemental mapping analysis, and compression testing confirms the structural integrity and viability of the resulting catalyst. The catalytic assessment of the developed catalyst in the Knoevenagel condensation reaction within aqueous settings demonstrates enhanced reusability attributed to the encapsulation within the 3D matrix. Notably, a hot filtration test provides empirical evidence of heterogeneous catalysis mode, further underpinning the catalyst’s performance and potential for sustainable applications.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
Catalyse et chimie supramoléculaire (CASU)
Date de dépôt :
2023-12-22T02:37:59Z
2024-01-12T08:50:24Z
2024-01-12T08:50:24Z