Functional Laws of Large Numbers in Hölder Spaces
Type de document :
Pré-publication ou Document de travail
Titre :
Functional Laws of Large Numbers in Hölder Spaces
Auteur(s) :
Mot(s)-clé(s) en anglais :
adaptive partial sums process
Hölder space
Marcinkiewicz-Zygmund strong law of large numbers
partial sums process
uniform law of large numbers
weighted increments
Hölder space
Marcinkiewicz-Zygmund strong law of large numbers
partial sums process
uniform law of large numbers
weighted increments
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
Let $S_n=X_1+\dots+X_n$, $n\ge 1$, where $(X_i)_{i\ge 1}$ are random variables. Let $\mu$ be a constant and $I$ be the identity function on $[0,1]$. We study the almost sure convergence to $\mu I$ of the two polygonal line ...
Lire la suite >Let $S_n=X_1+\dots+X_n$, $n\ge 1$, where $(X_i)_{i\ge 1}$ are random variables. Let $\mu$ be a constant and $I$ be the identity function on $[0,1]$. We study the almost sure convergence to $\mu I$ of the two polygonal line partial sums processes $\zeta_n$ and $\zeta_n^{\mathrm{ad}}$ with respective vertices $(k/n,S_k)$ and $(\tau_k,S_k)$, $0\le k\le n$, where $\tau_k=T_k/T_n$ and $T_k=\abs{X_1}+\dots+\abs{X_k}$. These convergences are considered in the space $C[0,1]$ or in the Hölder spaces $\mathcal{H}_\alpha^o[0,1]$, $0\le \alpha<1$. In $C[0,1]$, any strong law of large numbers satisfied by $S_n$ is inherited by $\zeta_n$. In $\mathcal{H}_\alpha^o[0,1]$, assuming moreover that the $X_i$'s are i.i.d., $n^{-1}\zeta_n$ converges almost surely to $\mu I$ if and only if $\E\abs{X_1}^{1/(1-\alpha)}<\infty$ and $\mu=\E X_1$. In contrast, the same convergence for $\zeta_n^{\mathrm{ad}}$ is equivalent to $\E\abs{X_1}<\infty$ and $\mu=\E X_1$.Lire moins >
Lire la suite >Let $S_n=X_1+\dots+X_n$, $n\ge 1$, where $(X_i)_{i\ge 1}$ are random variables. Let $\mu$ be a constant and $I$ be the identity function on $[0,1]$. We study the almost sure convergence to $\mu I$ of the two polygonal line partial sums processes $\zeta_n$ and $\zeta_n^{\mathrm{ad}}$ with respective vertices $(k/n,S_k)$ and $(\tau_k,S_k)$, $0\le k\le n$, where $\tau_k=T_k/T_n$ and $T_k=\abs{X_1}+\dots+\abs{X_k}$. These convergences are considered in the space $C[0,1]$ or in the Hölder spaces $\mathcal{H}_\alpha^o[0,1]$, $0\le \alpha<1$. In $C[0,1]$, any strong law of large numbers satisfied by $S_n$ is inherited by $\zeta_n$. In $\mathcal{H}_\alpha^o[0,1]$, assuming moreover that the $X_i$'s are i.i.d., $n^{-1}\zeta_n$ converges almost surely to $\mu I$ if and only if $\E\abs{X_1}^{1/(1-\alpha)}<\infty$ and $\mu=\E X_1$. In contrast, the same convergence for $\zeta_n^{\mathrm{ad}}$ is equivalent to $\E\abs{X_1}<\infty$ and $\mu=\E X_1$.Lire moins >
Langue :
Anglais
Commentaire :
A previous version was also published as preprint by IRMA Lille 2012 72-III. The present version is the one accepted for publication by ALEA Latin American Journal of Probability and Mathematical Statistics on June 10th 2013.
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- FSLLN-alea2.pdf
- Accès libre
- Accéder au document