Wavelet estimation of the long memory ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Wavelet estimation of the long memory parameter for Hermite polynomial of Gaussian processes
Auteur(s) :
Clausel, Marianne [Auteur]
Statistique Apprentissage Machine [SAM]
Roueff, François [Auteur]
Laboratoire Traitement et Communication de l'Information [LTCI]
Taqqu, Murad [Auteur]
Boston University [Boston] [BU]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Statistique Apprentissage Machine [SAM]
Roueff, François [Auteur]
Laboratoire Traitement et Communication de l'Information [LTCI]
Taqqu, Murad [Auteur]
Boston University [Boston] [BU]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
ESAIM: Probability and Statistics
Pagination :
42-76
Éditeur :
EDP Sciences
Date de publication :
2014-01
ISSN :
1292-8100
Mot(s)-clé(s) en anglais :
Hermite processes
Wavelet coefficients
Wiener chaos
self-similar processes
Long--range dependence
Wavelet coefficients
Wiener chaos
self-similar processes
Long--range dependence
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Théorie [stat.TH]
Résumé en anglais : [en]
We consider stationary processes with long memory which are non-Gaussian and represented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients and study the asymptotic behavior ...
Lire la suite >We consider stationary processes with long memory which are non-Gaussian and represented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients and study the asymptotic behavior of the sum of their squares since this sum is often used for estimating the long-memory parameter. We show that the limit is not Gaussian but can be expressed using the non-Gaussian Rosenblatt process defined as a Wiener Itô integral of order 2. This happens even if the original process is defined through a Hermite polynomial of order higher than 2.Lire moins >
Lire la suite >We consider stationary processes with long memory which are non-Gaussian and represented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients and study the asymptotic behavior of the sum of their squares since this sum is often used for estimating the long-memory parameter. We show that the limit is not Gaussian but can be expressed using the non-Gaussian Rosenblatt process defined as a Wiener Itô integral of order 2. This happens even if the original process is defined through a Hermite polynomial of order higher than 2.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- hq0-v3.pdf
- Accès libre
- Accéder au document
- 1105.1011
- Accès libre
- Accéder au document