Self-improving properties for abstract ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Self-improving properties for abstract Poincaré type inequalities
Auteur(s) :
Bernicot, Frederic [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Martell, José Maria [Auteur]
Instituto de Ciencias Matemàticas [Madrid] [ICMAT]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Martell, José Maria [Auteur]
Instituto de Ciencias Matemàticas [Madrid] [ICMAT]
Titre de la revue :
Transactions of the American Mathematical Society
Pagination :
4793-4835
Éditeur :
American Mathematical Society
Date de publication :
2015
ISSN :
0002-9947
Mot(s)-clé(s) :
Self-improving properties
BMO and Lipschitz spaces
John-Nirenberg inequalities
generalized Poincaré-Sobolev inequalities
pseudo-Poincaré inequalities
semigroups
BMO and Lipschitz spaces
John-Nirenberg inequalities
generalized Poincaré-Sobolev inequalities
pseudo-Poincaré inequalities
semigroups
Discipline(s) HAL :
Mathématiques [math]/Analyse classique [math.CA]
Résumé en anglais : [en]
We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., ...
Lire la suite >We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated BMO and Lipschitz spaces of [HMay,HMM].Lire moins >
Lire la suite >We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated BMO and Lipschitz spaces of [HMay,HMM].Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
42 pages
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- BM-final.pdf
- Accès libre
- Accéder au document
- 1107.2260
- Accès libre
- Accéder au document