On approximation numbers of composition operators
Type de document :
Pré-publication ou Document de travail
Titre :
On approximation numbers of composition operators
Auteur(s) :
Li, Daniel [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodriguez-Piazza, Luis [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodriguez-Piazza, Luis [Auteur]
Mot(s)-clé(s) en anglais :
approximation number
Bergman space
Carleson measure
composition operator
Hardy space
interpolation sequence
reproducing kernel
weighted Bergman space
weighted shift
Bergman space
Carleson measure
composition operator
Hardy space
interpolation sequence
reproducing kernel
weighted Bergman space
weighted shift
Discipline(s) HAL :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Résumé en anglais : [en]
We show that the approximation numbers of a compact composition operator on the weighted Bergman spaces $\mathfrak{B}_\alpha$ of the unit disk can tend to 0 arbitrarily slowly, but that they never tend quickly to 0: they ...
Lire la suite >We show that the approximation numbers of a compact composition operator on the weighted Bergman spaces $\mathfrak{B}_\alpha$ of the unit disk can tend to 0 arbitrarily slowly, but that they never tend quickly to 0: they grow at least exponentially, and this speed of convergence is only obtained for symbols which do not approach the unit circle. We also give an upper bounds and explicit an example.Lire moins >
Lire la suite >We show that the approximation numbers of a compact composition operator on the weighted Bergman spaces $\mathfrak{B}_\alpha$ of the unit disk can tend to 0 arbitrarily slowly, but that they never tend quickly to 0: they grow at least exponentially, and this speed of convergence is only obtained for symbols which do not approach the unit circle. We also give an upper bounds and explicit an example.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- approximation_preprint.pdf
- Accès libre
- Accéder au document
- 1104.4451
- Accès libre
- Accéder au document