Asymptotic theory for fractional regression ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Asymptotic theory for fractional regression models via Malliavin calculus
Author(s) :
Bourguin, Solesne [Auteur]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Journal of Theoretical Probability
Pages :
536-564
Publisher :
Springer
Publication date :
2010
ISSN :
0894-9840
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
English abstract : [en]
\noindent We study the asymptotic behavior as $n\to \infty$ of the sequence $$S_{n}=\sum_{i=0}^{n-1} K(n^{\alpha} B^{H_{1}}_{i}) \left( B^{H_{2}}_{i+1}-B^{H_{2}}_{i}\right)$$ where $B^{H_{1}}$ and $B^{H_{2}}$ are two ...
Show more >\noindent We study the asymptotic behavior as $n\to \infty$ of the sequence $$S_{n}=\sum_{i=0}^{n-1} K(n^{\alpha} B^{H_{1}}_{i}) \left( B^{H_{2}}_{i+1}-B^{H_{2}}_{i}\right)$$ where $B^{H_{1}}$ and $B^{H_{2}}$ are two independent fractional Brownian motions, $K$ is a kernel function and the bandwidth parameter $\alpha$ satisfies certain hypotheses in terms of $H_{1}$ and $H_{2}$. Its limiting distribution is a mixed normal law involving the local time of the fractional Brownian motion $B^{H_{1}}$. We use the techniques of the Malliavin calculus with respect to the fractional Brownian motion.Show less >
Show more >\noindent We study the asymptotic behavior as $n\to \infty$ of the sequence $$S_{n}=\sum_{i=0}^{n-1} K(n^{\alpha} B^{H_{1}}_{i}) \left( B^{H_{2}}_{i+1}-B^{H_{2}}_{i}\right)$$ where $B^{H_{1}}$ and $B^{H_{2}}$ are two independent fractional Brownian motions, $K$ is a kernel function and the bandwidth parameter $\alpha$ satisfies certain hypotheses in terms of $H_{1}$ and $H_{2}$. Its limiting distribution is a mixed normal law involving the local time of the fractional Brownian motion $B^{H_{1}}$. We use the techniques of the Malliavin calculus with respect to the fractional Brownian motion.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- asymptotic-fin.pdf
- Open access
- Access the document
- 1004.0680
- Open access
- Access the document