Diffusion dynamics of classical systems ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Diffusion dynamics of classical systems driven by an oscillatory force
Auteur(s) :
Castella, François [Auteur]
Institut de Recherche Mathématique de Rennes [IRMAR]
Degond, Pierre [Auteur]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Goudon, Thierry [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Institut de Recherche Mathématique de Rennes [IRMAR]
Degond, Pierre [Auteur]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Goudon, Thierry [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Titre de la revue :
Journal of Statistical Physics
Pagination :
913-950
Éditeur :
Springer Verlag
Date de publication :
2006
ISSN :
0022-4715
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of particles subject to the sum of a fixed, confining, Hamiltonian, and a small time-oscillating perturbation. Additionally, ...
Lire la suite >We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of particles subject to the sum of a fixed, confining, Hamiltonian, and a small time-oscillating perturbation. Additionally, the equation involves an interaction operator which projects the distribution function onto functions of the fixed Hamiltonian. The paper aims at providing a classical counterpart to the derivation of rate equations from the atomic Bloch equations. Here, the homogenization procedure leads to a diffusion equation in the energy variable. The presence of the interaction operator regularizes the limit process and leads to finite diffusion coefficients.Lire moins >
Lire la suite >We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of particles subject to the sum of a fixed, confining, Hamiltonian, and a small time-oscillating perturbation. Additionally, the equation involves an interaction operator which projects the distribution function onto functions of the fixed Hamiltonian. The paper aims at providing a classical counterpart to the derivation of rate equations from the atomic Bloch equations. Here, the homogenization procedure leads to a diffusion equation in the energy variable. The presence of the interaction operator regularizes the limit process and leads to finite diffusion coefficients.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- fulltext.pdf
- Accès libre
- Accéder au document