Asymptotic optimality of the edge finite ...
Type de document :
Pré-publication ou Document de travail
Titre :
Asymptotic optimality of the edge finite element approximation of the time-harmonic Maxwell's equations
Auteur(s) :
Chaumont-Frelet, Théophile [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ern, Alexandre [Auteur]
Simulation for the Environment: Reliable and Efficient Numerical Algorithms [SERENA]
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ern, Alexandre [Auteur]
Simulation for the Environment: Reliable and Efficient Numerical Algorithms [SERENA]
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
We analyze the conforming approximation of the time-harmonic Maxwell's equations using Nédélec (edge) finite elements. We prove that the approximation is asymptotically optimal, i.e., the approximation error in the energy ...
Lire la suite >We analyze the conforming approximation of the time-harmonic Maxwell's equations using Nédélec (edge) finite elements. We prove that the approximation is asymptotically optimal, i.e., the approximation error in the energy norm is bounded by the bestapproximation error times a constant that tends to one as the mesh is refined and/or the polynomial degree is increased. Moreover, under the same conditions on the mesh and/or the polynomial degree, we establish discrete inf-sup stability with a constant that corresponds to the continuous constant up to a factor of two at most. Our proofs apply under minimal regularity assumptions on the exact solution, so that general domains, material coefficients, and right-hand sides are allowed.Lire moins >
Lire la suite >We analyze the conforming approximation of the time-harmonic Maxwell's equations using Nédélec (edge) finite elements. We prove that the approximation is asymptotically optimal, i.e., the approximation error in the energy norm is bounded by the bestapproximation error times a constant that tends to one as the mesh is refined and/or the polynomial degree is increased. Moreover, under the same conditions on the mesh and/or the polynomial degree, we establish discrete inf-sup stability with a constant that corresponds to the continuous constant up to a factor of two at most. Our proofs apply under minimal regularity assumptions on the exact solution, so that general domains, material coefficients, and right-hand sides are allowed.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- chaumontfrelet_ern_2023a.pdf
- Accès libre
- Accéder au document