Construction of minimizing travelling waves ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Construction of minimizing travelling waves for the Gross-Pitaevskii equation on $\mathbb{R} \times \mathbb{T}$
Auteur(s) :
De Laire, André [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Systèmes de particules et systèmes dynamiques [Paradyse]
Gravejat, Philippe [Auteur]
Smets, Didier [Auteur]
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Systèmes de particules et systèmes dynamiques [Paradyse]
Gravejat, Philippe [Auteur]
Smets, Didier [Auteur]
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Titre de la revue :
Tunisian Journal of Mathematics
Pagination :
157-188
Éditeur :
Mathematical Science Publishers
Date de publication :
2024
ISSN :
2576-7658
Mot(s)-clé(s) en anglais :
Defocusing Schrödinger equation
Gross-Pitaevskii equation
travelling waves
planar dark solitons
nonzero conditions at infinity
concentration-compactness
Gross-Pitaevskii equation
travelling waves
planar dark solitons
nonzero conditions at infinity
concentration-compactness
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
As a sequel to our previous analysis in [9] on the Gross-Pitaevskii equation on the product space $\mathbb{R} \times \mathbb{T}$, we construct a branch of finite energy travelling waves as minimizers of the Ginzburg-Landau ...
Lire la suite >As a sequel to our previous analysis in [9] on the Gross-Pitaevskii equation on the product space $\mathbb{R} \times \mathbb{T}$, we construct a branch of finite energy travelling waves as minimizers of the Ginzburg-Landau energy at fixed momentum. We deduce that minimizers are precisely the planar dark solitons when the length of the transverse direction is less than a critical value, and that they are genuinely two-dimensional solutions otherwise. The proof of the existence of minimizers is based on the compactness of minimizing sequences, relying on a new symmetrization argument that is well-suited to the periodic setting.Lire moins >
Lire la suite >As a sequel to our previous analysis in [9] on the Gross-Pitaevskii equation on the product space $\mathbb{R} \times \mathbb{T}$, we construct a branch of finite energy travelling waves as minimizers of the Ginzburg-Landau energy at fixed momentum. We deduce that minimizers are precisely the planar dark solitons when the length of the transverse direction is less than a critical value, and that they are genuinely two-dimensional solutions otherwise. The proof of the existence of minimizers is based on the compactness of minimizing sequences, relying on a new symmetrization argument that is well-suited to the periodic setting.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- dLGS2-Product-GP-Final.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- dLGS2-Product-GP-Final.pdf
- Accès libre
- Accéder au document