Perturbations of operators similar to ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Perturbations of operators similar to contractions and the commutator equation
Auteur(s) :
Titre de la revue :
Studia Mathematica
Pagination :
273-293
Éditeur :
Instytut Matematyczny - Polska Akademii Nauk
Date de publication :
2002
ISSN :
0039-3223
Discipline(s) HAL :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Résumé en anglais : [en]
Let $T$ and $V$ be two Hilbert space contractions and let $X$ be a linear bounded operator. It was proved by C. Foias and J.P. Williams that in certain cases the operator block matrix $R(X;T,V)$ (defined in the text) is ...
Lire la suite >Let $T$ and $V$ be two Hilbert space contractions and let $X$ be a linear bounded operator. It was proved by C. Foias and J.P. Williams that in certain cases the operator block matrix $R(X;T,V)$ (defined in the text) is similar to a contraction if and only if the commutator equation $X = TZ-ZV$ has a bounded solution $Z$. We characterize here the similarity to contractions of some operator matrices $R(X;T,V)$ in terms of growth conditions or of perturbations of $R(0;T,V)=T\\oplus V$.Lire moins >
Lire la suite >Let $T$ and $V$ be two Hilbert space contractions and let $X$ be a linear bounded operator. It was proved by C. Foias and J.P. Williams that in certain cases the operator block matrix $R(X;T,V)$ (defined in the text) is similar to a contraction if and only if the commutator equation $X = TZ-ZV$ has a bounded solution $Z$. We characterize here the similarity to contractions of some operator matrices $R(X;T,V)$ in terms of growth conditions or of perturbations of $R(0;T,V)=T\\oplus V$.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
26 pages, Preprint version
Collections :
Source :
Fichiers
- 0501154
- Accès libre
- Accéder au document