A survey of cross-validation procedures ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
A survey of cross-validation procedures for model selection
Author(s) :
Arlot, Sylvain [Auteur]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
Celisse, Alain [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
Celisse, Alain [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Statistics Surveys
Pages :
40--79
Publisher :
Institute of Mathematical Statistics (IMS)
Publication date :
2010
ISSN :
1935-7516
English keyword(s) :
model selection
cross-validation
leave-one-out
cross-validation
leave-one-out
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Autres [stat.ML]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Applications [stat.AP]
Statistiques [stat]/Méthodologie [stat.ME]
Statistiques [stat]/Autres [stat.ML]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Applications [stat.AP]
Statistiques [stat]/Méthodologie [stat.ME]
English abstract : [en]
Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its apparent universality. Many results exist on the model selection performances ...
Show more >Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its apparent universality. Many results exist on the model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand.Show less >
Show more >Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its apparent universality. Many results exist on the model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Comment :
Published in Statistics Surveys (2010) 4, 40-79
Collections :
Source :
Files
- document
- Open access
- Access the document
- preprintLilleArlotCelisse.pdf
- Open access
- Access the document
- 0907.4728
- Open access
- Access the document