Asymptotic normality of kernel estimates ...
Type de document :
Pré-publication ou Document de travail
Titre :
Asymptotic normality of kernel estimates in a regression model for random fields
Auteur(s) :
El Machkouri, Mohamed [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Stoica, Radu [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Stoica, Radu [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Mot(s)-clé(s) en anglais :
Nonparametric regression estimation
asymptotic normality
kernel estimator
strongly mixing random field
asymptotic normality
kernel estimator
strongly mixing random field
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Théorie [stat.TH]
Résumé en anglais : [en]
We establish the asymptotic normality of the regression estimator in a fixed-design setting when the errors are given by a field of dependent random variables. The result applies to martingale-difference or strongly mixing ...
Lire la suite >We establish the asymptotic normality of the regression estimator in a fixed-design setting when the errors are given by a field of dependent random variables. The result applies to martingale-difference or strongly mixing random fields. On this basis, a statistical test that can be applied to image analysis is also presented.Lire moins >
Lire la suite >We establish the asymptotic normality of the regression estimator in a fixed-design setting when the errors are given by a field of dependent random variables. The result applies to martingale-difference or strongly mixing random fields. On this basis, a statistical test that can be applied to image analysis is also presented.Lire moins >
Langue :
Anglais
Commentaire :
20 pages
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Spatial-regression.pdf
- Accès libre
- Accéder au document
- 0907.1519
- Accès libre
- Accéder au document