On a structure-preserving numerical method ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
On a structure-preserving numerical method for fractional Fokker-Planck equations
Author(s) :
Ayi, Nathalie [Auteur]
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Herda, Maxime [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Hivert, Hélène [Auteur]
Institut Camille Jordan [ICJ]
Modélisation mathématique, calcul scientifique [MMCS]
Tristani, Isabelle [Auteur]
Département de Mathématiques et Applications - ENS-PSL [DMA]
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Herda, Maxime [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Hivert, Hélène [Auteur]
Institut Camille Jordan [ICJ]
Modélisation mathématique, calcul scientifique [MMCS]
Tristani, Isabelle [Auteur]
Département de Mathématiques et Applications - ENS-PSL [DMA]
Journal title :
Mathematics of Computation
Pages :
635--693
Publisher :
American Mathematical Society
Publication date :
2023
ISSN :
0025-5718
English keyword(s) :
Fractional Laplacian
Kinetic equations
Numerical methods
Hypocoercivity
Kinetic equations
Numerical methods
Hypocoercivity
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
In this paper, we introduce and analyse numerical schemes for the homogeneous and the kinetic Lévy-Fokker-Planck equation. The discretizations are designed to preserve the main features of the continuous model such as ...
Show more >In this paper, we introduce and analyse numerical schemes for the homogeneous and the kinetic Lévy-Fokker-Planck equation. The discretizations are designed to preserve the main features of the continuous model such as conservation of mass, heavy-tailed equilibrium and (hypo)coercivity properties. We perform a thorough analysis of the numerical scheme and show exponential stability and convergence of the scheme. Along the way, we introduce new tools of discrete functional analysis, such as discrete nonlocal Poincaré and interpolation inequalities adapted to fractional diffusion. Our theoretical findings are illustrated and complemented with numerical simulations..Show less >
Show more >In this paper, we introduce and analyse numerical schemes for the homogeneous and the kinetic Lévy-Fokker-Planck equation. The discretizations are designed to preserve the main features of the continuous model such as conservation of mass, heavy-tailed equilibrium and (hypo)coercivity properties. We perform a thorough analysis of the numerical scheme and show exponential stability and convergence of the scheme. Along the way, we introduce new tools of discrete functional analysis, such as discrete nonlocal Poincaré and interpolation inequalities adapted to fractional diffusion. Our theoretical findings are illustrated and complemented with numerical simulations..Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- document
- Open access
- Access the document
- paper-acc.pdf
- Open access
- Access the document