Study of an entropy dissipating finite ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Study of an entropy dissipating finite volume scheme for a nonlocal cross-diffusion system
Auteur(s) :
Herda, Maxime [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Zurek, Antoine [Auteur]
Laboratoire de Mathématiques Appliquées de Compiègne [LMAC]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Zurek, Antoine [Auteur]
Laboratoire de Mathématiques Appliquées de Compiègne [LMAC]
Titre de la revue :
ESAIM: Mathematical Modelling and Numerical Analysis
Pagination :
1589 - 1617
Éditeur :
EDP Sciences
Date de publication :
2023-05
ISSN :
0764-583X
Mot(s)-clé(s) en anglais :
Nonlocal cross-diffusion
finite volume schemes
entropy method
convergence
finite volume schemes
entropy method
convergence
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
In this paper we analyse a finite volume scheme for a nonlocal version of the Shigesada-Kawazaki-Teramoto (SKT) cross-diffusion system. We prove the existence of solutions to the scheme, derive qualitative properties of ...
Lire la suite >In this paper we analyse a finite volume scheme for a nonlocal version of the Shigesada-Kawazaki-Teramoto (SKT) cross-diffusion system. We prove the existence of solutions to the scheme, derive qualitative properties of the solutions and prove its convergence. The proofs rely on a discrete entropy-dissipation inequality, discrete compactness arguments, and on the novel adaptation of the so-called duality method at the discrete level. Finally, thanks to numerical experiments, we investigate the influence of the nonlocality in the system: on convergence properties of the scheme, as an approximation of the local system and on the development of diffusive instabilities.Lire moins >
Lire la suite >In this paper we analyse a finite volume scheme for a nonlocal version of the Shigesada-Kawazaki-Teramoto (SKT) cross-diffusion system. We prove the existence of solutions to the scheme, derive qualitative properties of the solutions and prove its convergence. The proofs rely on a discrete entropy-dissipation inequality, discrete compactness arguments, and on the novel adaptation of the so-called duality method at the discrete level. Finally, thanks to numerical experiments, we investigate the influence of the nonlocality in the system: on convergence properties of the scheme, as an approximation of the local system and on the development of diffusive instabilities.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- main.pdf
- Accès libre
- Accéder au document
- 2207.01928
- Accès libre
- Accéder au document