RainBench: Towards Global Precipitation ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Titre :
RainBench: Towards Global Precipitation Forecasting from Satellite Imagery
Auteur(s) :
de Witt, Christian Schroeder [Auteur]
Tong, Catherine [Auteur]
Zantedeschi, Valentina [Auteur]
Department of Computer science [University College of London] [UCL-CS]
MOdel for Data Analysis and Learning [MODAL]
The Inria London Programme [Inria-London]
de Martini, Daniele [Auteur]
Kalaitzis, Freddie [Auteur]
Chantry, Matthew [Auteur]
Watson-Parris, Duncan [Auteur]
Bilinski, Piotr [Auteur]
Tong, Catherine [Auteur]
Zantedeschi, Valentina [Auteur]
Department of Computer science [University College of London] [UCL-CS]
MOdel for Data Analysis and Learning [MODAL]
The Inria London Programme [Inria-London]
de Martini, Daniele [Auteur]
Kalaitzis, Freddie [Auteur]
Chantry, Matthew [Auteur]
Watson-Parris, Duncan [Auteur]
Bilinski, Piotr [Auteur]
Titre de la manifestation scientifique :
Association for the Advancement of Artificial Intelligence
Ville :
Virtual
Pays :
Royaume-Uni
Date de début de la manifestation scientifique :
2021-02-01
Discipline(s) HAL :
Informatique [cs]/Apprentissage [cs.LG]
Planète et Univers [physics]/Océan, Atmosphère
Planète et Univers [physics]/Océan, Atmosphère
Résumé en anglais : [en]
Extreme precipitation events, such as violent rainfall and hail storms, routinely ravage economies and livelihoods around the developing world. Climate change further aggravates this issue. Data-driven deep learning ...
Lire la suite >Extreme precipitation events, such as violent rainfall and hail storms, routinely ravage economies and livelihoods around the developing world. Climate change further aggravates this issue. Data-driven deep learning approaches could widen the access to accurate multi-day forecasts, to mitigate against such events. However, there is currently no benchmark dataset dedicated to the study of global precipitation forecasts. In this paper, we introduce \textbf{RainBench}, a new multi-modal benchmark dataset for data-driven precipitation forecasting. It includes simulated satellite data, a selection of relevant meteorological data from the ERA5 reanalysis product, and IMERG precipitation data. We also release \textbf{PyRain}, a library to process large precipitation datasets efficiently. We present an extensive analysis of our novel dataset and establish baseline results for two benchmark medium-range precipitation forecasting tasks. Finally, we discuss existing data-driven weather forecasting methodologies and suggest future research avenues.Lire moins >
Lire la suite >Extreme precipitation events, such as violent rainfall and hail storms, routinely ravage economies and livelihoods around the developing world. Climate change further aggravates this issue. Data-driven deep learning approaches could widen the access to accurate multi-day forecasts, to mitigate against such events. However, there is currently no benchmark dataset dedicated to the study of global precipitation forecasts. In this paper, we introduce \textbf{RainBench}, a new multi-modal benchmark dataset for data-driven precipitation forecasting. It includes simulated satellite data, a selection of relevant meteorological data from the ERA5 reanalysis product, and IMERG precipitation data. We also release \textbf{PyRain}, a library to process large precipitation datasets efficiently. We present an extensive analysis of our novel dataset and establish baseline results for two benchmark medium-range precipitation forecasting tasks. Finally, we discuss existing data-driven weather forecasting methodologies and suggest future research avenues.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
Work completed during the 2020 Frontier Development Lab research accelerator, a private-public partnership with NASA in the US, and ESA in Europe
Collections :
Source :
Fichiers
- 2012.09670
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 2012.09670v1.pdf
- Accès libre
- Accéder au document