Semiclassical Resonances of Schrödinger ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Semiclassical Resonances of Schrödinger operators as zeroes of regularized determinants
Author(s) :
Bouclet, Jean-Marc [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Bruneau, Vincent [Auteur]
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Bruneau, Vincent [Auteur]
Institut de Mathématiques de Bordeaux [IMB]
Journal title :
International Mathematics Research Notices
Pages :
ID rnn002, 55 pages
Publisher :
Oxford University Press (OUP)
Publication date :
2008
ISSN :
1073-7928
English keyword(s) :
Schrödinger operator
resonances
semi-classical
relative determinant
spectral shift function
scattering
Breit-Wigner
resonances
semi-classical
relative determinant
spectral shift function
scattering
Breit-Wigner
HAL domain(s) :
Mathématiques [math]/Théorie spectrale [math.SP]
English abstract : [en]
We prove that the resonances of long range perturbations of the (semiclassical) Laplacian are the zeroes of natural perturbation determinants. We more precisely obtain factorizations of these determinants of the form $ ...
Show more >We prove that the resonances of long range perturbations of the (semiclassical) Laplacian are the zeroes of natural perturbation determinants. We more precisely obtain factorizations of these determinants of the form $ \prod_{w = {\rm resonances}}(z-w) \exp (\varphi_p(z,h)) $ and give semiclassical bounds on $ \partial_z \varphi_p $ as well as a representation of Koplienko's regularized spectral shift function. Here the index $ p \geq 1 $ depends on the decay rate at infinity of the perturbation.Show less >
Show more >We prove that the resonances of long range perturbations of the (semiclassical) Laplacian are the zeroes of natural perturbation determinants. We more precisely obtain factorizations of these determinants of the form $ \prod_{w = {\rm resonances}}(z-w) \exp (\varphi_p(z,h)) $ and give semiclassical bounds on $ \partial_z \varphi_p $ as well as a representation of Koplienko's regularized spectral shift function. Here the index $ p \geq 1 $ depends on the decay rate at infinity of the perturbation.Show less >
Language :
Anglais
Popular science :
Non
Comment :
37 pages, published version
Collections :
Source :
Files
- document
- Open access
- Access the document
- Det-imrn-revu.pdf
- Open access
- Access the document
- 0709.2060
- Open access
- Access the document