Semiclassical Resonances of Schrödinger ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Semiclassical Resonances of Schrödinger operators as zeroes of regularized determinants
Auteur(s) :
Bouclet, Jean-Marc [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Bruneau, Vincent [Auteur]
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Bruneau, Vincent [Auteur]
Institut de Mathématiques de Bordeaux [IMB]
Titre de la revue :
International Mathematics Research Notices
Pagination :
ID rnn002, 55 pages
Éditeur :
Oxford University Press (OUP)
Date de publication :
2008
ISSN :
1073-7928
Mot(s)-clé(s) en anglais :
Schrödinger operator
resonances
semi-classical
relative determinant
spectral shift function
scattering
Breit-Wigner
resonances
semi-classical
relative determinant
spectral shift function
scattering
Breit-Wigner
Discipline(s) HAL :
Mathématiques [math]/Théorie spectrale [math.SP]
Résumé en anglais : [en]
We prove that the resonances of long range perturbations of the (semiclassical) Laplacian are the zeroes of natural perturbation determinants. We more precisely obtain factorizations of these determinants of the form $ ...
Lire la suite >We prove that the resonances of long range perturbations of the (semiclassical) Laplacian are the zeroes of natural perturbation determinants. We more precisely obtain factorizations of these determinants of the form $ \prod_{w = {\rm resonances}}(z-w) \exp (\varphi_p(z,h)) $ and give semiclassical bounds on $ \partial_z \varphi_p $ as well as a representation of Koplienko's regularized spectral shift function. Here the index $ p \geq 1 $ depends on the decay rate at infinity of the perturbation.Lire moins >
Lire la suite >We prove that the resonances of long range perturbations of the (semiclassical) Laplacian are the zeroes of natural perturbation determinants. We more precisely obtain factorizations of these determinants of the form $ \prod_{w = {\rm resonances}}(z-w) \exp (\varphi_p(z,h)) $ and give semiclassical bounds on $ \partial_z \varphi_p $ as well as a representation of Koplienko's regularized spectral shift function. Here the index $ p \geq 1 $ depends on the decay rate at infinity of the perturbation.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
37 pages, published version
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Det-imrn-revu.pdf
- Accès libre
- Accéder au document
- 0709.2060
- Accès libre
- Accéder au document