String topology of classifying spaces
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
String topology of classifying spaces
Auteur(s) :
Chataur, David [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Menichi, Luc [Auteur]
Laboratoire Angevin de Recherche en Mathématiques [LAREMA]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Menichi, Luc [Auteur]
Laboratoire Angevin de Recherche en Mathématiques [LAREMA]
Titre de la revue :
Journal für die reine und angewandte Mathematik
Pagination :
1 - 45
Éditeur :
Walter de Gruyter
Date de publication :
2012
ISSN :
0075-4102
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
<p>Let G be a finite group or a compact connected Lie group and let BG be its classifying space. Let ℒBG ≔ map(S1, BG) be the free loop space of BG, i.e. the space of continuous maps from the circle S1 to BG. The purpose ...
Lire la suite ><p>Let G be a finite group or a compact connected Lie group and let BG be its classifying space. Let ℒBG ≔ map(S1, BG) be the free loop space of BG, i.e. the space of continuous maps from the circle S1 to BG. The purpose of this paper is to study the singular homology H*(ℒBG) of this loop space. We prove that when taken with coefficients in a field the homology of ℒBG is a homological conformal field theory. As a byproduct of our Main Theorem, we get a Batalin–Vilkovisky algebra structure on the cohomology H*(ℒBG). We also prove an algebraic version of this result by showing that the Hochschild cohomology HH*(S*(G), S*(G)) of the singular chains of G is a Batalin–Vilkovisky algebra.Comments (0)</p>Lire moins >
Lire la suite ><p>Let G be a finite group or a compact connected Lie group and let BG be its classifying space. Let ℒBG ≔ map(S1, BG) be the free loop space of BG, i.e. the space of continuous maps from the circle S1 to BG. The purpose of this paper is to study the singular homology H*(ℒBG) of this loop space. We prove that when taken with coefficients in a field the homology of ℒBG is a homological conformal field theory. As a byproduct of our Main Theorem, we get a Batalin–Vilkovisky algebra structure on the cohomology H*(ℒBG). We also prove an algebraic version of this result by showing that the Hochschild cohomology HH*(S*(G), S*(G)) of the singular chains of G is a Batalin–Vilkovisky algebra.Comments (0)</p>Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- 0801.0174
- Accès libre
- Accéder au document