Lie-Trotter Splitting for the Nonlinear ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Lie-Trotter Splitting for the Nonlinear Stochastic Manakov System
Author(s) :
Berg, André [Auteur]
Umeå University = Umeå Universitet
Cohen, David [Auteur]
Department of Mathematical Sciences [Chalmers]
Dujardin, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Umeå University = Umeå Universitet
Cohen, David [Auteur]
Department of Mathematical Sciences [Chalmers]
Dujardin, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Journal title :
Journal of Scientific Computing
Publisher :
Springer Verlag
Publication date :
2021-05-22
ISSN :
0885-7474
English keyword(s) :
Stochastic partial differential equations
Stochastic Manakov equation
Coupled system of stochastic nonlinear Schrödinger equations
Numerical schemes
Splitting scheme
Lie–Trotter scheme
Strong convergence
Convergence in probability
Almost sure convergence
Convergence rates
Blowup
Stochastic Manakov equation
Coupled system of stochastic nonlinear Schrödinger equations
Numerical schemes
Splitting scheme
Lie–Trotter scheme
Strong convergence
Convergence in probability
Almost sure convergence
Convergence rates
Blowup
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Science non linéaire [physics]/Formation de Structures et Solitons [nlin.PS]
Physique [physics]/Physique [physics]/Optique [physics.optics]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Science non linéaire [physics]/Formation de Structures et Solitons [nlin.PS]
Physique [physics]/Physique [physics]/Optique [physics.optics]
English abstract : [en]
This article analyses the convergence of the Lie-Trotter splitting scheme for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. First, we prove ...
Show more >This article analyses the convergence of the Lie-Trotter splitting scheme for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. First, we prove that the strong order of the numerical approximation is 1/2 if the nonlinear term in the system is globally Lipschitz. Then, we show that the splitting scheme has convergence order 1/2 in probability and almost sure order 1/2- in the case of a cubic nonlinearity. We provide several numerical experiments illustrating the aforementioned results and the efficiency of the Lie-Trotter splitting scheme. Finally, we numerically investigate the possible blowup of solutions for some power-law nonlinearities.Show less >
Show more >This article analyses the convergence of the Lie-Trotter splitting scheme for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. First, we prove that the strong order of the numerical approximation is 1/2 if the nonlinear term in the system is globally Lipschitz. Then, we show that the splitting scheme has convergence order 1/2 in probability and almost sure order 1/2- in the case of a cubic nonlinearity. We provide several numerical experiments illustrating the aforementioned results and the efficiency of the Lie-Trotter splitting scheme. Finally, we numerically investigate the possible blowup of solutions for some power-law nonlinearities.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- lieManakov.preprint.HAL.pdf
- Open access
- Access the document
- 2010.15679
- Open access
- Access the document
- document
- Open access
- Access the document
- lieManakov.preprint.HAL.pdf
- Open access
- Access the document