An extremal composition operator on the ...
Type de document :
Pré-publication ou Document de travail
Titre :
An extremal composition operator on the Hardy space of the bidisk with small approximation numbers
Auteur(s) :
Li, Daniel [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodríguez-Piazza, Luis [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodríguez-Piazza, Luis [Auteur]
Mot(s)-clé(s) en anglais :
approximation numbers
Key-words approximation numbers
bidisk
composition operator
cusp map
distinguished boundary
Hardy space
Key-words approximation numbers
bidisk
composition operator
cusp map
distinguished boundary
Hardy space
Discipline(s) HAL :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Résumé en anglais : [en]
We construct an analytic self-map $\Phi$ of the bidisk ${\mathbb D}^2$ whose image touches the distinguished boundary, but whose approximation numbers of the associated composition operator on $H^2 ({\mathbb D}^2)$ are ...
Lire la suite >We construct an analytic self-map $\Phi$ of the bidisk ${\mathbb D}^2$ whose image touches the distinguished boundary, but whose approximation numbers of the associated composition operator on $H^2 ({\mathbb D}^2)$ are small in the sense that $\limsup_{n \to \infty} [a_{n^2} (C_\Phi)]^{1 / n} < 1$.Lire moins >
Lire la suite >We construct an analytic self-map $\Phi$ of the bidisk ${\mathbb D}^2$ whose image touches the distinguished boundary, but whose approximation numbers of the associated composition operator on $H^2 ({\mathbb D}^2)$ are small in the sense that $\limsup_{n \to \infty} [a_{n^2} (C_\Phi)]^{1 / n} < 1$.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Distinguished%20boundary.pdf
- Accès libre
- Accéder au document
- 1901.07245
- Accès libre
- Accéder au document