Non-stability of Paneitz–Branson type ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Non-stability of Paneitz–Branson type equations in arbitrary dimensions
Author(s) :
Bakri, Laurent [Auteur]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Casteras, Jean-Baptiste [Auteur]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Casteras, Jean-Baptiste [Auteur]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Journal title :
Nonlinear Analysis: Theory, Methods and Applications
Pages :
118-133
Publisher :
Elsevier
Publication date :
2014-09
ISSN :
0362-546X
English keyword(s) :
Paneitz-Branson type equations
Liapunov-Schmidt reduction procedure
blow up solutions
Liapunov-Schmidt reduction procedure
blow up solutions
HAL domain(s) :
Mathématiques [math]/Géométrie différentielle [math.DG]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
Let $(M, g)$ be a compact riemannian manifold of dimension $n\geq 5$. We consider a Paneitz-Branson type equation with general coefficients $(E)\Delta_{g}^{2} u − div_g (A_g du) + hu = |u| \frac{2 * −2−\epsilon} u$ on $M$, ...
Show more >Let $(M, g)$ be a compact riemannian manifold of dimension $n\geq 5$. We consider a Paneitz-Branson type equation with general coefficients $(E)\Delta_{g}^{2} u − div_g (A_g du) + hu = |u| \frac{2 * −2−\epsilon} u$ on $M$, (E) where $A_g$ is a smooth symmetric (2, 0)-tensor, $h\in C^\infty (M), 2 * = \frac{2n}{n − 4}$ and $\epsilon$ is a small positive parameter. Assuming that there exists a positive nondegenerate solution of (E) when $\epsilon = 0$ and under suitable conditions, we construct solutions $u_\epsilon$ of type $(u_0 − BBl_\epsilon)$ to (E) which blow up at one point of the manifold when $\epsilon$ tends to 0 for all dimensions $n\geq 5$.Show less >
Show more >Let $(M, g)$ be a compact riemannian manifold of dimension $n\geq 5$. We consider a Paneitz-Branson type equation with general coefficients $(E)\Delta_{g}^{2} u − div_g (A_g du) + hu = |u| \frac{2 * −2−\epsilon} u$ on $M$, (E) where $A_g$ is a smooth symmetric (2, 0)-tensor, $h\in C^\infty (M), 2 * = \frac{2n}{n − 4}$ and $\epsilon$ is a small positive parameter. Assuming that there exists a positive nondegenerate solution of (E) when $\epsilon = 0$ and under suitable conditions, we construct solutions $u_\epsilon$ of type $(u_0 − BBl_\epsilon)$ to (E) which blow up at one point of the manifold when $\epsilon$ tends to 0 for all dimensions $n\geq 5$.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- bulle_paneitz_final_rc7.pdf
- Open access
- Access the document
- bulle_paneitz_final_rc7.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- bulle_paneitz_final_rc7.pdf
- Open access
- Access the document