Variational approximation of size-mass ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Variational approximation of size-mass energies for k-dimensional currents
Auteur(s) :
Chambolle, Antonin [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Ferrari, Luca Alberto Davide [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Merlet, Benoît [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Ferrari, Luca Alberto Davide [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Merlet, Benoît [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Titre de la revue :
ESAIM: Control, Optimisation and Calculus of Variations
Pagination :
39
Éditeur :
EDP Sciences
Date de publication :
2019-09-20
ISSN :
1292-8119
Mot(s)-clé(s) en anglais :
Phase-field approximations
Gamma Convergence
Steiner Problem
Gamma Convergence
Steiner Problem
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
In this paper we produce a $Γ$-convergence result for a class of energies $F k ε,a$ modeled on the Ambrosio-Tortorelli functional. For the choice k = 1 we show that $F 1 ε,a Γ$-converges to a branched transportation energy ...
Lire la suite >In this paper we produce a $Γ$-convergence result for a class of energies $F k ε,a$ modeled on the Ambrosio-Tortorelli functional. For the choice k = 1 we show that $F 1 ε,a Γ$-converges to a branched transportation energy whose cost per unit length is a function $f n−1 a$ depending on a parameter $a > 0$ and on the codimension n − 1. The limit cost f a (m) is bounded from below by 1 + m so that the limit functional controls the mass and the length of the limit object. In the limit a ↓ 0 we recover the Steiner energy. We then generalize the approach to any dimension and codimension. The limit objects are now k-currents with prescribed boundary, the limit functional controls both their masses and sizes. In the limit $a ↓ 0$, we recover the Plateau energy defined on k-currents, $k < n$. The energies $F k ε,a$ then can be used for the numerical treatment of the k-Plateau problem.Lire moins >
Lire la suite >In this paper we produce a $Γ$-convergence result for a class of energies $F k ε,a$ modeled on the Ambrosio-Tortorelli functional. For the choice k = 1 we show that $F 1 ε,a Γ$-converges to a branched transportation energy whose cost per unit length is a function $f n−1 a$ depending on a parameter $a > 0$ and on the codimension n − 1. The limit cost f a (m) is bounded from below by 1 + m so that the limit functional controls the mass and the length of the limit object. In the limit a ↓ 0 we recover the Steiner energy. We then generalize the approach to any dimension and codimension. The limit objects are now k-currents with prescribed boundary, the limit functional controls both their masses and sizes. In the limit $a ↓ 0$, we recover the Plateau energy defined on k-currents, $k < n$. The energies $F k ε,a$ then can be used for the numerical treatment of the k-Plateau problem.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- VarApproxOfkDimCurrents.pdf
- Accès libre
- Accéder au document
- 1710.08808
- Accès libre
- Accéder au document