Strong approximation in h-mass of rectifiable ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Strong approximation in h-mass of rectifiable currents under homological constraint
Author(s) :
Chambolle, Antonin [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Ferrari, Luca Alberto Davide [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Merlet, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Ferrari, Luca Alberto Davide [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Merlet, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Journal title :
Advances in Calculus of Variation
Pages :
343--363
Publisher :
Walter de Gruyter GmbH
Publication date :
2021-07-01
ISSN :
1864-8266
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Mathématiques [math]/Optimisation et contrôle [math.OC]
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Mathématiques [math]/Optimisation et contrôle [math.OC]
English abstract : [en]
Let h : R → R+ be a lower semi-continuous subbadditive and even function such that h(0) = 0 and h(θ) ≥ α|θ| for some α > 0. The h-mass of a k-polyhedral chain P =∑j θjσj in R n (0 ≤ k ≤ n) is defined as M h (P) := j h(θj) ...
Show more >Let h : R → R+ be a lower semi-continuous subbadditive and even function such that h(0) = 0 and h(θ) ≥ α|θ| for some α > 0. The h-mass of a k-polyhedral chain P =∑j θjσj in R n (0 ≤ k ≤ n) is defined as M h (P) := j h(θj) H k (σj). If T = τ (M, θ, ξ) is a k-rectifiable chain, the definition extends to M h (T) := M h(θ) dH k. Given such a rectifiable flat chain T with M h (T) < ∞ and ∂T polyhedral, we prove that for every η > 0, it decomposes as T = P + ∂V with P polyhedral, V rectifiable, M h (V) < η and M h (P) < M h (T) + η. In short, we have a polyhedral chain P which strongly approximates T in h-mass and preserves the homological constraint ∂P = ∂T. These results are motivated by the study of approximations of M h by smoother functionals but they also provide explicit formulas for the lower semicontinuous envelope of T → M h (T) + I ∂S (∂T) with respect to the topology of the flat norm.Show less >
Show more >Let h : R → R+ be a lower semi-continuous subbadditive and even function such that h(0) = 0 and h(θ) ≥ α|θ| for some α > 0. The h-mass of a k-polyhedral chain P =∑j θjσj in R n (0 ≤ k ≤ n) is defined as M h (P) := j h(θj) H k (σj). If T = τ (M, θ, ξ) is a k-rectifiable chain, the definition extends to M h (T) := M h(θ) dH k. Given such a rectifiable flat chain T with M h (T) < ∞ and ∂T polyhedral, we prove that for every η > 0, it decomposes as T = P + ∂V with P polyhedral, V rectifiable, M h (V) < η and M h (P) < M h (T) + η. In short, we have a polyhedral chain P which strongly approximates T in h-mass and preserves the homological constraint ∂P = ∂T. These results are motivated by the study of approximations of M h by smoother functionals but they also provide explicit formulas for the lower semicontinuous envelope of T → M h (T) + I ∂S (∂T) with respect to the topology of the flat norm.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- Strong_approximation_in_h_mass_June11.pdf
- Open access
- Access the document
- 1806.05046
- Open access
- Access the document
- document
- Open access
- Access the document
- Strong_approximation_in_h_mass_June11.pdf
- Open access
- Access the document