Parameter Setting for Evolutionary Latent ...
Type de document :
Communication dans un congrès avec actes
Titre :
Parameter Setting for Evolutionary Latent Class Clustering
Auteur(s) :
Tessier, Damien [Auteur]
Algorithmic number theory for cryptology [TANC]
Schoenauer, Marc [Auteur]
Algorithmic number theory for cryptology [TANC]
Biernacki, Christophe [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Celeux, Gilles [Auteur]
Model selection in statistical learning [SELECT]
Govaert, Gérard [Auteur]
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] [Heudiasyc]
Algorithmic number theory for cryptology [TANC]
Schoenauer, Marc [Auteur]
Algorithmic number theory for cryptology [TANC]
Biernacki, Christophe [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Celeux, Gilles [Auteur]
Model selection in statistical learning [SELECT]
Govaert, Gérard [Auteur]
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] [Heudiasyc]
Éditeur(s) ou directeur(s) scientifique(s) :
Lishan Kang and Yong Liu and Sanyou Y. Zeng
Titre de la manifestation scientifique :
Second International Symposium, ISICA 2007
Ville :
Wuhan
Pays :
Chine
Date de début de la manifestation scientifique :
2007-09-21
Titre de la revue :
LNCS
Éditeur :
Springer Verlag
Date de publication :
2007
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Mathématiques [math]/Statistiques [math.ST]
Mathématiques [math]/Statistiques [math.ST]
Résumé en anglais : [en]
The latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence ...
Lire la suite >The latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. However, it leads to a criterion that proves difficult to optimise by the standard approach based on the EM algorithm. An Evolutionary Algorithms is designed to tackle this discrete optimisation problem, and an extensive parameter study on a large artificial dataset allows to derive stable parameters. Those parameters are then validated on other artificial datasets, as well as on some well-known real data: the Evolutionary Algorithm performs repeatedly better than other standard clustering techniques on the same data.Lire moins >
Lire la suite >The latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. However, it leads to a criterion that proves difficult to optimise by the standard approach based on the EM algorithm. An Evolutionary Algorithms is designed to tackle this discrete optimisation problem, and an extensive parameter study on a large artificial dataset allows to derive stable parameters. Those parameters are then validated on other artificial datasets, as well as on some well-known real data: the Evolutionary Algorithm performs repeatedly better than other standard clustering techniques on the same data.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- latentEA.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- latentEA.pdf
- Accès libre
- Accéder au document