The Martin boundary of relatively hyperbolic ...
Document type :
Pré-publication ou Document de travail
Title :
The Martin boundary of relatively hyperbolic groups with virtually abelian parabolic subgroups
Author(s) :
Dussaule, Matthieu [Auteur]
Laboratoire de Mathématiques Jean Leray [LMJL]
Gekhtman, Ilya [Auteur]
Gerasimov, Victor [Auteur]
Potyagailo, Leonid [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire de Mathématiques Jean Leray [LMJL]
Gekhtman, Ilya [Auteur]
Gerasimov, Victor [Auteur]
Potyagailo, Leonid [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
HAL domain(s) :
Mathématiques [math]/Théorie des groupes [math.GR]
Mathématiques [math]/Topologie géométrique [math.GT]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Topologie géométrique [math.GT]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Probabilités [math.PR]
English abstract : [en]
Given a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization ...
Show more >Given a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space H n , we show that the Martin boundary coincides with the CAT (0) boundary of the truncated space, and thus when n = 3, is homeomorphic to the Sierpinski carpet.Show less >
Show more >Given a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space H n , we show that the Martin boundary coincides with the CAT (0) boundary of the truncated space, and thus when n = 3, is homeomorphic to the Sierpinski carpet.Show less >
Language :
Anglais
Collections :
Source :
Files
- document
- Open access
- Access the document
- rel_hyp_groups.pdf
- Open access
- Access the document
- 1711.11307
- Open access
- Access the document