Hypersurfaces in weighted projective spaces ...
Document type :
Communication dans un congrès avec actes: Partie d'ouvrage
Title :
Hypersurfaces in weighted projective spaces over finite fields with applications to coding theory
Author(s) :
Aubry, Yves [Auteur]
Institut de Mathématiques de Marseille [I2M]
Institut de Mathématiques de Toulon - EA 2134 [IMATH]
Castryck, Wouter [Auteur]
Catholic University of Leuven = Katholieke Universiteit Leuven [KU Leuven]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ghorpade, Sudhir [Auteur]
Indian Institute of Technology Bombay [IIT Bombay]
Lachaud, Gilles [Auteur]
Institut de Mathématiques de Marseille [I2M]
O 'Sullivan, Michael [Auteur]
San Diego State University [SDSU]
Ram, Samrith [Auteur]
Institut de Mathématiques de Marseille [I2M]
Institut de Mathématiques de Toulon - EA 2134 [IMATH]
Castryck, Wouter [Auteur]
Catholic University of Leuven = Katholieke Universiteit Leuven [KU Leuven]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ghorpade, Sudhir [Auteur]
Indian Institute of Technology Bombay [IIT Bombay]
Lachaud, Gilles [Auteur]
Institut de Mathématiques de Marseille [I2M]
O 'Sullivan, Michael [Auteur]
San Diego State University [SDSU]
Ram, Samrith [Auteur]
Scientific editor(s) :
Howe E.
Lauter K.
Walker J.
Lauter K.
Walker J.
Conference title :
Algebraic Geometry for Coding Theory and Cryptography
Conference organizers(s) :
IPAM (UCLA)
City :
Los Angeles
Country :
Etats-Unis d'Amérique
Start date of the conference :
2016-02-22
Book title :
Algebraic Geometry for Coding Theory and Cryptography
Publisher :
Springer, Cham
Publication date :
2017-11-16
HAL domain(s) :
Mathématiques [math]/Géométrie algébrique [math.AG]
Informatique [cs]/Théorie de l'information [cs.IT]
Informatique [cs]/Théorie de l'information [cs.IT]
English abstract : [en]
We consider the question of determining the maximum number of Fq-rational points that can lie on a hypersurface of a given degree in a weighted projective space over the finite field Fq, or in other words, the maximum ...
Show more >We consider the question of determining the maximum number of Fq-rational points that can lie on a hypersurface of a given degree in a weighted projective space over the finite field Fq, or in other words, the maximum number of zeros that a weighted homogeneous polynomial of a given degree can have in the corresponding weighted projective space over Fq. In the case of classical projective spaces, this question has been answered by J.-P. Serre. In the case of weighted projective spaces, we give some conjectures and partial results. Applications to coding theory are included and an appendix providing a brief compendium of results about weighted projective spaces is also included.Show less >
Show more >We consider the question of determining the maximum number of Fq-rational points that can lie on a hypersurface of a given degree in a weighted projective space over the finite field Fq, or in other words, the maximum number of zeros that a weighted homogeneous polynomial of a given degree can have in the corresponding weighted projective space over Fq. In the case of classical projective spaces, this question has been answered by J.-P. Serre. In the case of weighted projective spaces, we give some conjectures and partial results. Applications to coding theory are included and an appendix providing a brief compendium of results about weighted projective spaces is also included.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
European Project :
Collections :
Source :
Files
- document
- Open access
- Access the document
- Hypersurfaces_in_weighted_projective_spaces-v2.pdf
- Open access
- Access the document
- 1706.03050
- Open access
- Access the document