On the global existence of weak solution ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
On the global existence of weak solution for a multiphasic incompressible fluid model with Korteweg stress
Author(s) :
Calgaro, Caterina [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ezzoug, Meriem [Auteur]
Département de Mathématiques [Monastir]
Zahrouni, Ezzeddine [Auteur]
Département de Mathématiques [Monastir]
Université de Carthage (Tunisie) [UCAR]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ezzoug, Meriem [Auteur]
Département de Mathématiques [Monastir]
Zahrouni, Ezzeddine [Auteur]
Département de Mathématiques [Monastir]
Université de Carthage (Tunisie) [UCAR]
Journal title :
Mathematical Methods in the Applied Sciences
Publisher :
Wiley
Publication date :
2017
ISSN :
0170-4214
English keyword(s) :
Kazhikhov-Smagulov model
Korteweg model
Mixture theory
global existence result
Korteweg model
Mixture theory
global existence result
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
In this paper, we study a multiphasic incompressible fluid model, called the Kazhikhov-Smagulov model, with a particular viscous stress tensor, introduced by Bresch and co-authors, and a specific diffusive interface term ...
Show more >In this paper, we study a multiphasic incompressible fluid model, called the Kazhikhov-Smagulov model, with a particular viscous stress tensor, introduced by Bresch and co-authors, and a specific diffusive interface term introduced for the first time by Korteweg in 1901. We prove that this model is globally well posed in a 3D bounded domain.Show less >
Show more >In this paper, we study a multiphasic incompressible fluid model, called the Kazhikhov-Smagulov model, with a particular viscous stress tensor, introduced by Bresch and co-authors, and a specific diffusive interface term introduced for the first time by Korteweg in 1901. We prove that this model is globally well posed in a 3D bounded domain.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- Calgaro-Ezzoug-Zahrouni_hal%20version.pdf
- Open access
- Access the document
- Calgaro-Ezzoug-Zahrouni_hal%20version.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- Calgaro-Ezzoug-Zahrouni_hal%20version.pdf
- Open access
- Access the document