Summer School 2012 - Foliations, Pseudoholomorphic curves, Applications;
École d’été 2012 - Feuilletages, Courbes pseudoholomorphes, Applications
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...)
Titre :
Alexandre Sukhov - J-complex curves: some applications (Part 1)
Summer School 2012 - Foliations, Pseudoholomorphic curves, Applications
École d’été 2012 - Feuilletages, Courbes pseudoholomorphes, Applications
Summer School 2012 - Foliations, Pseudoholomorphic curves, Applications
École d’été 2012 - Feuilletages, Courbes pseudoholomorphes, Applications
Complément de titre :
École d’été 2012 - Feuilletages, Courbes pseudoholomorphes, Applications
Auteur(s) :
Sukhov, Alexandre [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Binder, Robert [Monteur]
Institut Fourier [IF ]
Bastien, Fanny [Monteur]
Institut Fourier [IF ]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Binder, Robert [Monteur]
Institut Fourier [IF ]
Bastien, Fanny [Monteur]
Institut Fourier [IF ]
Date de publication :
2012-06-28
Mot(s)-clé(s) :
eem2012
école d’été 2012
grenoble
feuilletages
courbes pseudoholomorphes
applications
école d’été 2012
grenoble
feuilletages
courbes pseudoholomorphes
applications
Mot(s)-clé(s) en anglais :
summer school 2012
foliations
pseudoholomorphic curves
J-complex curves
foliations
pseudoholomorphic curves
J-complex curves
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative for the d-bar operator. Attaching ...
Lire la suite >We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative for the d-bar operator. Attaching a complex disc to a Lagrangian manifold. Application : exotic symplectic structures. Hulls of totally real manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford -Gaveau-Gromov theorem). Some applications. Symplectic and contact structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of the Weinstein conjecture. 3. J-complex lines and hyperbolicity. The KAM theory and Moser’s stability theorem for entire J-complex curves in tori. Global deformation and Bangert’s theorem.Lire moins >
Lire la suite >We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative for the d-bar operator. Attaching a complex disc to a Lagrangian manifold. Application : exotic symplectic structures. Hulls of totally real manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford -Gaveau-Gromov theorem). Some applications. Symplectic and contact structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of the Weinstein conjecture. 3. J-complex lines and hyperbolicity. The KAM theory and Moser’s stability theorem for entire J-complex curves in tori. Global deformation and Bangert’s theorem.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- 25juin_aprem.mp4
- Accès libre
- Accéder au document
- 25juin_aprem.flv
- Accès libre
- Accéder au document