Waring's problem for polynomials in two variables
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Waring's problem for polynomials in two variables
Auteur(s) :
Bodin, Arnaud [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Car, Mireille [Auteur]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Car, Mireille [Auteur]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
Titre de la revue :
Proceedings of the American Mathematical Society
Pagination :
1577-1589
Éditeur :
American Mathematical Society
Date de publication :
2013-05
ISSN :
0002-9939
Mot(s)-clé(s) en anglais :
several variables polynomials
sum of powers
approximate roots
Vandermonde determinant
sum of powers
approximate roots
Vandermonde determinant
Discipline(s) HAL :
Mathématiques [math]/Théorie des nombres [math.NT]
Résumé en anglais : [en]
We prove that all polynomials in several variables can be decomposed as the sums of $k$th powers: $P(x_1,...,x_n) = Q_1(x_1,...,x_n)^k+...+ Q_s(x_1,...,x_n)^k$, provided that elements of the base field are themselves sums ...
Lire la suite >We prove that all polynomials in several variables can be decomposed as the sums of $k$th powers: $P(x_1,...,x_n) = Q_1(x_1,...,x_n)^k+...+ Q_s(x_1,...,x_n)^k$, provided that elements of the base field are themselves sums of $k$th powers. We also give bounds for the number of terms $s$ and the degree of the $Q_i^k$. We then improve these bounds in the case of two variables polynomials of large degree to get a decomposition $P(x,y) = Q_1(x,y)^k+...+ Q_s(x,y)^k$ with $\deg Q_i^k \le \deg P + k^3$ and $s$ that depends on $k$ and $\ln (\deg P)$.Lire moins >
Lire la suite >We prove that all polynomials in several variables can be decomposed as the sums of $k$th powers: $P(x_1,...,x_n) = Q_1(x_1,...,x_n)^k+...+ Q_s(x_1,...,x_n)^k$, provided that elements of the base field are themselves sums of $k$th powers. We also give bounds for the number of terms $s$ and the degree of the $Q_i^k$. We then improve these bounds in the case of two variables polynomials of large degree to get a decomposition $P(x,y) = Q_1(x,y)^k+...+ Q_s(x,y)^k$ with $\deg Q_i^k \le \deg P + k^3$ and $s$ that depends on $k$ and $\ln (\deg P)$.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- 1104.0472
- Accès libre
- Accéder au document