A new spatial regression estimator in the ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
A new spatial regression estimator in the multivariate context
Author(s) :
Dabo-Niang, Sophie [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Yao, Anne-Françoise [Auteur]
Ternynck, Camille [Auteur]
Economie Quantitative, Intégration, Politiques Publiques et Econométrie [EQUIPPE]
MOdel for Data Analysis and Learning [MODAL]
Yao, Anne-Françoise [Auteur]
Ternynck, Camille [Auteur]
Economie Quantitative, Intégration, Politiques Publiques et Econométrie [EQUIPPE]
Journal title :
Comptes rendus de l'Académie des sciences. Série I, Mathématique
Pages :
635 - 639
Publisher :
Elsevier
Publication date :
2015-04-10
ISSN :
0764-4442
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
English abstract : [en]
In this note, we propose a nonparametric spatial estimator of the regression function View the MathML sourcex→r(x):=E[Yi|Xi=x],x∈Rd, of a stationary (d+1)(d+1)-dimensional spatial process View the MathML source{(Yi,Xi),i∈ZN}, ...
Show more >In this note, we propose a nonparametric spatial estimator of the regression function View the MathML sourcex→r(x):=E[Yi|Xi=x],x∈Rd, of a stationary (d+1)(d+1)-dimensional spatial process View the MathML source{(Yi,Xi),i∈ZN}, at a point located at some station j. The proposed estimator depends on two kernels in order to control both the distance between observations and the spatial locations. Almost complete convergence and consistency in LqLq norm (q∈N⁎)(q∈N⁎) of the kernel estimate are obtained when the sample considered is an α-mixing sequence.Show less >
Show more >In this note, we propose a nonparametric spatial estimator of the regression function View the MathML sourcex→r(x):=E[Yi|Xi=x],x∈Rd, of a stationary (d+1)(d+1)-dimensional spatial process View the MathML source{(Yi,Xi),i∈ZN}, at a point located at some station j. The proposed estimator depends on two kernels in order to control both the distance between observations and the spatial locations. Almost complete convergence and consistency in LqLq norm (q∈N⁎)(q∈N⁎) of the kernel estimate are obtained when the sample considered is an α-mixing sequence.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- j.crma.2015.04.004.pdf
- Open access
- Access the document